SDL Library Documentation

SDL Library Documentation
Published v1.2.0, April 2001

"Simple, efficient, and portable”

Table of Contents

(TS L 0 T [PPSR i
L = 7= o] = SRR U USSR i
ADOUE SDL...tiicteieteisee ettt sttt sa et st st et et e e st e sestesesaeteneetenenre e i
ADOUL SDLOOC. ...ttt ettt s b ettt sb et e e e ebe b e i

L0 =70 [£SO RP USRS i

L. THE BASICS ... ettt sttt bbb b b e e e e e st e st bt b et e b e e et ebe et e e nren 2
INEFOAUCTION. ...ttt bbbt s b e b b se e e ae b e snenan 2
TaTLEE= U4 o TR I S 2

2 €] =T o] a1 T2 3R= T To IRV T [T T 1
INtrodUCEiION t0 SDL VIAEO........ciieiirieiireeiesese sttt 1
Initializing the VIde0 DiSPlay.........cccvvirerereeieeeseseseseeeeesese e e e e sse e e seens 1

Initializing the Best VIdE0 MOdE.........ccccoueeeerenese s 1

Loading and Displaying a BMP Fil€......cccccovviiiiivinceece e 2

Drawing Directly t0 the DiSPlay........ccoccereerrenrierieeree e 3

USING OPENGL WIth SDL......couiuiiiiireiereierenee et 5

T L= VIS oo TR 5

(D)= 11T o OSSPSR OSSPSR 7

3. INPUL NANAIING. ...ttt b e e b e e b e b 17
HaNdliNg JOYSHCKS. ..ot 17

T 1= VT4 (o o S 17

QUETYING. ettt ettt ekttt b et b et b et b bt e bt seebese et e b e ebene s 17

Opening a Joystick and Receiving Joystick EvVents..........ccccoovoevencinccnnnnne 18

Advanced JOoystiCK FUNCHONS...........coiieiiriceeesee e 20

Handling the Keyboard............ccii e 22
Keyboard Related StrUCIUIES........ccooiiiiee e 22

SDLKEY....utitetirietisietesis et s teeste st sae e se et se et et e et sttt sae b e te et e erenen 22

SDLMOG....cuetiiieiisietesie ettt st e e se s sesaese e tesaeteseebeneerenens 22

SDL_KBYSYIM ...ttt st sb e e 22
SDL_KeyboardEVENL..........coi i e 23

Reading Keyboard EVENLS..........cocrriiieeeceee e e 23

A More Detailed LOOK. ..ot e 24
GaAME-TYPE INPUL....eeeieiii et sae e e b e e nreesaee s 27
= 1] 0] =S 31
INEFOAUCTION. ...ttt sttt eb e b b e e e e seeb e b neens 31
V=T A = U 0 0] 1= 31
Filtering and Handling EVENES..........cccoovviievereeecese e 31

F U (o 10T otz U]][R 33
Opening the audio dEVICE.........cccceee e 33

[Fo YT = 10 o 1o TS 33

CDROM EXAQMPIES...iiiieieeeieseseseeseeeseesesesseestesesseesessestestessesessessessessessensessensesessenseses 34

LiSting CD-ROM AFIVES......cciuiirieiireeierere sttt sttt 34
Opening the default AriVe.........cceeeeerere s e 35
Listing the tracks 0N @ CD.......cccveeieeeiseserereeeees e e 36

Play an entir@ CD......cccoveeeeeeiisiee e a e ere e s 36
LTSI TG T 4]] [T SNSRI 37
Time based game [0QP........ccoerererere e 37

[1. SDL REFEIEICE ...ttt a et e et seebesbeseese e e eneenesneseens 38
T C 1T a1 | TSRS 39
ST I T OSSR 39
SDL_INIESUDSYSIEML......ceii it 41
SDL_QUItSUDSYSIEM.....ueiiiiiiieie ettt bbb e sb e e 43
ST I 1| TSRS 44
S IV = 1 1 T 45
T T [T o TSRS 47
B I o AV T LYo R U 5 = Vo = a7
S I 1Y AV T =0 [(o 49
S I o [=To B4V =15 A= U o1 50
S I £ 11, o o = 51
S I o [=T0 1Y To o [T 1 53
S I ST AV o [T 11/ Yo [55
Sy I T To Fo (= = o AR 57
Sy I U o Fo L= =T £ 58
ST I 1o TSRS PSTPRPTN 59
Y IS 11 (o] [0 S 60
Sy IS 1T = 1] 1= S 62
S I ST (=T 10 0= 64
SDL_GetGammMaRAM......coirererieieirierie sttt sresr e e e s erenne s 65
SDL_SetGammMaRAMIP.......coirrerierieieirierie sttt e sr s s e e s erenne s 66
Y I V= o] {1 P 67
ST I V= T {1 A 68
] I =Y] 2 69
SDL_GEIRGBA. ... ettt et st ee 70
SDL_CreateRGBSUIMACE ... 71
SDL_CreateRGBSUIfaCeFIQM.........coiiiiieieeee ettt e 73
SDL_FrEESUIMACE. ... ettt st te e e ne b e e 74
SDL_LOCKSUIMACE.......ecueiiee ettt sttt e 75
SDL_UNIOCKSUITACE. ...ttt e 77
SDL_LOAUBMPU.......iiciiiecie ettt sttt sttt st s sa et e ete e ebeseebe e nreneas 78
SDL_SAVEBMP......oiiiiicesee ettt sttt st be e nrene s 79
YD I ST (001 (o] 4 1) AU 80
SDL_SEAIPRNA. ...t bbb e 81
SDL_SEICHPRECL.....cuiiieiirieiiieetesieteesee ettt st te et st sesae s saete e steseetenenseneas 84
SDL_GEICHPRECT. ...ttt et b e e 85

Y I @0 1V o 6T U = Lo =SS 86

SDL_BIESUMACEcuiieeiirecie ettt st s eb e sbe e 87
SDL_FIlIRECT ...ttt 89
SDL_DISPIayFOIMAL........ceiiiuiirieiriee ettt 90
SDL_DisplayFormatAlPNaL.........ccoeiieiree e 91
SDL_WaIPMOUSE.....c.ceiiiciiriiritetisres ettt b e sn s e enennes 92
SDL_CrEatE@CUISAN......cveeeietiiterie sttt sr e r e ne e e s renre s 93
SDL_FrEECUISOL......eiieeeeet ettt ettt sr e r e p e e st erenre s 96
B I ST (O U] £ o] (OSSP 97
S I 1] (O £ ST 98
SDL__SNOWCUISQLcueiieiieieeteete ettt be st e e e e e s sesaesbesbeste e e e enesseneeses 99
Y0] I € I oY= To [o] - o OSSR 100
SDL_GL_GEtPrOCAUAIESS.......cceeie ettt ettt ettt s reesaesreeaesreennens 101
SDL_GL_GetAIDULE........eciectecece ettt sae e s re e 103
SDL_GL_SEetALNDULE.......c.eciecieceee e sre e e e eanens 104
SDL_GL_SWaPBUFEIS.....cciiiiiee e e 106
SDL_CreateYUVOVEIAY.......cccciiieeeeeee e 107
SDL_LOCKYUVOVEIIAY.......ccciitieiecieceecie et te st e e ste e ste st e te e e enaesneeaesreennens 108
SDL_UNIOCKYUVOVETIAY.......cceeiecie ettt ste e sne e e e ennens 109
SDL_DisplayYUVOVEIAY.........ccceiiieeie et ste s eae e sne e sae e ennens 110
SDL_Fre€YUVOVETAY.......cccicieceee ettt ennens 111
S GLAMIE. ..ttt et b e b e h e b e e ene e 112
SDL_RECL ettt e e n et ene e 113
ST I o][SRS 114
Sy I = 1Y (S 115
Sy I 0T C= | o] 1 = S 116
ST IS T 0 g - Vo= S 120
S]] IV To [=To 1 o TS 122
Y I @ =T 4 - S 124
7. WINAOW MANAGEMENL.......ciueiiiciiieiiricrter ettt st 126
SDL_WM_SELCAPLION.....ceetieeteirieeriee ettt 126
SDL_WM_GELCAPLION....ceiviirtiieieeriee sttt sttt s 127
SDL_WM_SEHICON......eiiiiiieiieteste et e nnennes 128
SDL_WNM_ICONITYWINAOW. ...t 129
SDL_WM_TOQQIEFUIISCIEEI. ...ttt 130
SDL_WM_GrablNPUL......ccoiriieieieitsiee et 131
LS T YT o USSR 132
T 0T [T 1o o PSS 132
SDL EVENT STIUCTUMNES.....ceeeiiiieeeieie sttt sttt st s sa e s aesaesanen 132
SDL_EVENL.... ettt et e e e e e e nann 132
SDL_ACHVEEVENL ...ttt sttt eaans 136
SDL_KeYbDOardEVENL........cooiieieere st 138
SDL_MOUSEMOIONEVENL.......ccue ettt s e 139
SDL_MOUSEBUMONEVENL.......cccviiiiieieeiis ettt s 141

SDL_JOYAXISEVENL.......c.cceii ittt sttt s 143

SDL_JOYBUONEVENL.......coiiiiieeeceeteere e 144
SDL_JOYHAIEVENL......ocuiiiiii it 145
SDL_JOYBAIIEVENL......ccociirieirietee ettt e 147
SDL_RESIZEEVENL......cociiie e 148
SDL_SYSWMEVENL.......c.coiiiiriteeeeeeese et s 149
SDL_USEIEVENL.....oiiiiieeitit ettt e 150
SDL_QUITEVENL ..ottt 152
SDL_KBYSYIML....eiiitiieitereeteree ettt ettt bbbt e 153
SDLKBY ...ttt bbb bbbt 155
EVENT FUNCHONS. ...ttt 160
SDL_PUMPEVENTS.......ciiiiiiirieeee e e 160
SDL_PEEPEVENLSottt et e e e 161
SDL_POIEVENL.......coeceeececeee ettt st st e e sreenaens 162

SDL_ WaIEVENL ...ttt st st ae et saeeaesreenaens 164
SDL_PUSRHEVENL.......oeeeeeee ettt et e s 165
SDL_SEtEVENTFIEEL......ccii ettt s e 166
SDL_GEtEVENTFIEL.... .ottt 168
SDL_EVENISTALR.....cccii ittt e e e 169
SDL_GetKEYSIALE......coiii ittt 170
SDL_GEeIMOUSTALE........coveeereerrcerree s 171

S B I Y= 1Y [o 5] = 1 =S 173
SDL_GEetKEYNAME.....cuii ettt et s e re s 174
SDL_ENABIEUNICODE.........ccciiirreeieieterisiee et 175
SDL_ENabIEKEYREPEAL.........cceieeeecice et s 176
SDL_GEetMOUSESIALE.cveiiee ettt s e 177
SDL_GetRelativVEMOUSESIALE.ccvcveeirereeeceeere e 178

S B I 1] 7Y o] 0351 = (= 3RS 179
SDL_JOYSHCKEVENTSIALE.......ccceeeeece et 180

9. JOYSHCK .ttt 181
SDL_NUMJIOYSHCKS. ...c.ccuiiirieririeesieie ettt 181
SDL_JOYSHCKNAIME.cuiiiiiiirieeriee et 183
SDL_JOYSHCKOPEN.....c.ccuiiirtiirieerte ittt ettt 184
SDL_JOYSHCKOPENEA.c.couiiiiiiiteeriee et 186
SDL_JOYSHCKINAEX. ...ceiviriitirieieeriet ettt 187
SDL_JOYSHCKNUMAXES.....coeiiteirtetrieit sttt sttt sttt 188
SDL_JOyStCKNUMBALIS.......cooiiiiiiieeee e 189
SDL_JOYSHCKNUMHALS......c.coiitiiiieirieeiee e 190
SDL_JOYStCKNUMBULIOMNS........eiiteirieiirieie sttt 191
SDL_JOYSHCKUPTALE.......cceitiiiieerieerieere ettt e 192
SDL_JOYSHCKGEIAXIS. ...eeuerueeteeterie ettt sttt st se e e b be e e e e e eaeeeas 193
SDL_JOYSHCKGEIHAL........coiieiiiiie e et 195
SDL_JOYSHCKGEIBULIONL.....cueitiiiieeicietcre ettt e sae s 196
SDL_JOYSHCKGEIBALL.......cooieiiiiieeeeeee e 197

SDL_JOYSHCKCIOSE.... ettt ene e 199

IO TR o o OSSR SO T RTR 200
SDL_AUGIOSPEC . .e ittt ettt ettt st st 200
SDL_OPENAUIO.......ccuireetirietiieieee ettt 204
SDL_PAUSEAUIQ.cuiriitirietiieiiisiesi ettt 207
SDL_GEtAUdIOSTALUS......cueeeeiieiiertiesie et 208
SDL_LOGAWAV......coiiiitieeie ettt sttt bbbt 209
SDL_FTEEWAV......cetieie ettt ettt 211
SDL_AUGIOCV Tttt ettt b ettt 212
SDL_BUIIJAUAIOCV T.....eiiiitiietitee ettt bbb 214
Y I @0 171 o VN8 o [o OSSR 215
SDL_MIXAUGIO ...ttt ettt ettt en s 218
SDL_LOCKAUIO........i ittt ettt s te st e st saeesaesreenesaeeneens 219
SDL_UNIOCKAUIQ.......cciiiiieiececece ettt sttt e sreeaesreennens 220
SDL_CIOSEAUAIQ.......ceiiieiicece ettt sre e s te st e e st e eneesnesaeeaesreennens 221

11, CD-ROM.....oiiiiiiciirettre ettt ettt b e b s b 222
SDL_CDNUNMDFIIVESottt ettt e e sre e s te st atasbesneensesreeaesreennens 222
SDL_CDNEIME. ...ttt ettt n s 224
SDL_CDOPEN. .ttt sttt sttt 225
SDL_CDSTALUS.....cueveteieere sttt sttt r et 227
SDL_CDPIAY. ..ttt sttt 229
S I O B L P |V I > Vo] RS 230
SDL_CDPAUSE.....c.eiieiireerereerereetee ettt ettt nes 232
SDL_CDRESUMIE. ...ttt ittecie ettt sttt st et e e st esae e sab e e be e sbeesaaesnbeesbeesaeesntes 233
SDL_CDSIOPD. ... treuerrerereere sttt sttt 234
SDL_CDEJECL...c.eiitceiiieresiereee s 235
5] I 4 0T 1 o 1= S 236
ST I O SRS 237
Y I 1 = Tod S 239

12. Multi-threaded Programiming..........cccoeereireenneneeseeseeesie s seeeseenes 240
SDL_CreateThrEaM.ot e 240
SDL_TRIEAUID.....c.i ittt 242
SDL_GEtThrEadID........ccciiiiiiirieieieesie et 243
SDL_WaITRIEAM.c.eieeieieeteeetee et 244
SDL_KIlITRIEAM......covcueieeee ettt e 245
SDL_CrEatEMULEX.......cceeiiiirisresie ettt e nnennes 246
SDL_DESIIOYMULEX......ceeeiiiiiiiiirisiereeeeeet ettt s 248
SDL MUEEXP.. ettt sttt b et e b s ae e e s ae e saeeneen 249
SDL MUEEXV. ittt st st b e a et be et e sbe st e be s b e e st e besaeaneesaeeeesresanens 250
SDL_CreateSemMapROLe.ottt e 251
SDL_DeSstroySemMaphOre.coi ittt e eae s 253
SDL_SEMWALL.....c.oiiiiieite ettt 254
SDL_SEMTIYWVAIL.....ceieeieeeie ettt et sb e s bt sa e b e 256
SDL_SeMWatTIMEOUL......cccveitiiieite et e e e sttt e b e s reesaesreeeesreennens 258

IS0 I ST 4 o SRS 260

SDL_SEMVAIUE......coiiieiie ettt 261
SDL_Cre@t@CONd.......ceieiirieiiieieeerie ettt 262
SDL_DESIOYCONM.....c.iiieiiietiietiiriesi ettt b 263
SDL_CONASIGNAL ...ttt e e 264
SDL_CONABrOAACAST.cueeeeiieiiiitirieneer et 265
SDL_CONAWALL.......ciitiicie ettt sttt 266
SDL_CONAWAILTIMEOUL.......ceiteiireirieesiee ettt 267
IR TR 11011 OSSOSO 268
Y I =T i o3 SR 268
SDL_DEIAY....c vttt bbbt 269
SDL_ AGUTIMEL ..ttt ettt n e 270
SDL_REMOVETIMELottt sttt st e e e sre e e s tesbeessesbeeneesesreeeesreeneens 272
S IS T= T T 1= PSRRI 273

List of Tables

8-1
8-2

. SDL Keysym defiNitiONS.........coviieiiie ettt st 155
. SDL MOdIifier efiNITIONS......coooiii ittt ra e st e s sbr e s sabeessbeeean 159

List of Examples

I T F= 4] g o IS L TSSOSO ST 2
2-1. Initializing the VIdE0 DISPIAY......ccrrueririiirieirieeriete ettt 1
2-2. Initializing the BESt VIdE0 MOGE..........cooiiiiieireereceree et 1
2-3. Loading and Displaying @ BMP File..........cccoiiiiiiinicceesee e 2
B o =] {010 G) S 3
ST 1011010 G [ST RTR 3
2-6. USING PULPIXEI() .+ttt ettt s st re et b b s sb e e et sb et 4
2-7. Initializing SDL With OPENGL.....ccooiiiiiiiieeeeeetr et s s 5
2-8. SDL 8GN0 OPENGL......ciiiiitiiteeieeee ettt ettt st b et e et st ebesbe s eess e s e e et e aesbe st es 8
3-1. Initializing SDL With JOYSHCK SUPPOLL.....cciiiiieiriiierierieieee st 17
3-2. Querying the Number of Available JOYSHCKS.........ccccveiieiecicese e e 17
B e I @] o= a1 o = 0o) V£ 1o S 18
3-4. JOYSHCK AXIS EVENLS.....ccuiciieee ettt ettt st saesae e te st e e ne et e sneennesneenean 19
3-5. MOre JOYSHICK AXIS EVENLS.......ccciiieee ettt e st s sae s ae e e e e e sneeneesnennnas 19
3-6. JOYSHCK BUILON EVENTS.....c.oiiiceee ettt st sttt e e sne e e snennees 20
3-7. JOYSHCK BAll EVENLS......ccuiiiiiesieseee ettt te ettt sttt st e e neenesnennas 20
3-8. JOYSHCK HAt EVENLS....ccciciiiieitirieie sttt st sttt e e s aeseeseenae e e e enesnenean 21
3-9. Querying JoystiCk CharaCteriStICS.......ccciviieierieierire e e sre s 22
3-10. Reading Keyboard EVENLS........ccccueiiiieie et se ettt sneneas 23
3-11. Interpreting Key Event INfOrmation..........ccoccoevreieiisieeeese e 24
3-12. Proper Game MOVEIMEIIL.........cccvieererieeienieseeseeseeeseestesseesesseessessssseessessesssessessesssessesssessesnes 28

|. SDL Guide

Preface

About SDL

The SDL library is designed to make it easy to write games that run on Linux, *BSD, MacOS,

Win32 and BeOS using the various native high-performance media interfaces, (for video, audio, etc)
and presenting a single source-code level API to your application. SDL is a fairly low level API, but
using it, completely portable applications can be written with a great deal of flexibility.

About SDLdoc

SDLdoc (The SDL Documentation Project) was formed to completely rewrite the SDL
documentation and to keep it continually up to date. The team consists completely of volunteers
ranging from people working with SDL in their spare time to people who use SDL in their everyday
working lives.

The latest version of this documentation can always be found here: http://sdldoc.csn.ul.ie
Downloadable PS, man pages and html tarballs are available at http://sdidoc.csn.ul.ie/pub/

Credits

Sam Lantinga, slouken@libsdl.org
Martin Donlon, akawaka@skynet.ie
Mattias Engdegard

Julian Peterson

Ken Jordan

Maxim Sobolev

Wesley Poole

Michael Vance

Andreas Umbach

Andreas Hofmeister

Chapter 1. The Basics

Introduction

The SDL Guide section is pretty incomplete. If you feel you have anything to add mail
akawaka@skynet.ie or visit http://akawaka.csn.ul.ie/tne/.

Initializing SDL

SDL is composed of eight subsystems - Audio, CDROM, Event Handling, File I/0, Joystick
Handling, Threading, Timers and Video. Before you can use any of these subsystems they must be
initialized by callingSDL_Init (or SDL_InitSubSystem . SDL_Init must be called before any

other SDL function. It automatically initializes the Event Handling, File I/0 and Threading
subsystems and it takes a parameter specifying which other subsystems to initialize. So, to initialize
the default subsystems and the Video subsystems you would call:

SDL_Init (SDL_INIT_VIDEO);
To initialize the default subsystems, the Video subsystem and the Timers subsystem you would call:

SDL_Init (SDL_INIT_VIDEO | SDL_INIT_TIMER);

SDL_Init is complemented bgDL_Quit (andSDL_QuitSubSystem). SDL_Quit shuts down all
subsystems, including the default ones. It should always be called before a SDL application exits.

With SDL_Init andSDL_Quit firmly embedded in your programmers toolkit you can write your
first and most basic SDL application. However, we must be prepare to handle errors. Many SDL
functions return a value and indicates whether the function has succeeded oiSilethit , for
instance, returns -1 if it could not initialize a subsystem. SDL provides a useful facility that allows
you to determine exactly what the problem was, every time an error occurs within SDL an error
message is stored which can be retrieved usibg GetError . Use this often, you can never know
too much about an error.

Example 1-1. Initializing SDL

#include "SDL.h" /* All SDL App’s need this */
#include <stdio.h>

int main() {

printf("Initializing SDL.\n");

/* Initialize defaults, Video and Audio */
if((SDL_Init(SDL_INIT_VIDEO|SDL_INIT_AUDIO)==-1)) {

printf("Could not initialize SDL: %s.\n", SDL_GetError());

exit(-1);
}

printf("SDL initialized.\n");
printf("Quiting SDL.\n");

/* Shutdown all subsystems */
SDL_Quit();

printf("Quiting....\n");

exit(0);

Chapter 1. The Basics

Chapter 2. Graphics and Video

Introduction to SDL Video

Video is probably the most common thing that SDL is used for, and so it has the most complete
subsystem. Here are a few examples to demonstrate the basics.

Initializing the Video Display

This is what almost all SDL programs have to do in one way or another.

Example 2-1. Initializing the Video Display

SDL_Surface *screen;

/* Initialize the SDL library */
if(SDL_Init(SDL_INIT_VIDEO) < 0) {
fprintf(stderr,
"Couldn't initialize SDL: %s\n", SDL_GetError());
exit(1);
}

/* Clean up on exit */
atexit(SDL_Quit);

/*
* |Initialize the display in a 640x480 8-bit palettized mode,
* requesting a software surface
*/
screen = SDL_SetVideoMode(640, 480, 8, SDL_SWSURFACE);
if (screen == NULL) {
fprintf(stderr, "Couldn't set 640x480x8 video mode: %s\n",
SDL_GetError());
exit(1);

Initializing the Best Video Mode

If you have a preference for a certain pixel depth but will accept any other, use SDL_SetVideoMode
with SDL_ANYFORMAT as below. You can also use SDL_VideoModeOK() to find the native video
mode that is closest to the mode you request.

Chapter 2. Graphics and Video

Example 2-2. Initializing the Best Video Mode

/* Have a preference for 8-bit, but accept any depth */
screen = SDL_SetVideoMode(640, 480, 8, SDL_SWSURFACE|SDL_ANYFORMAT);
if (screen == NULL) {

fprintf(stderr, "Couldn’t set 640x480x8 video mode: %s\n",

SDL_GetError());

exit(1);
}
printf("Set 640x480 at %d bits-per-pixel mode\n",

screen->format->BitsPerPixel);

Loading and Displaying a BMP File

The following function loads and displays a BMP file given as argument, once SDL is initialised and
a video mode has been set.

Example 2-3. Loading and Displaying a BMP File

void display_bmp(char *file_name)

{

SDL_Surface *image;

/* Load the BMP file into a surface */

image = SDL_LoadBMP(file_name);

if (image == NULL) {
fprintf(stderr, "Couldn’t load %s: %s\n", file_name, SDL_GetError());
return;

}

/*

* Palettized screen modes will have a default palette (a standard

* 8*8*4 colour cube), but if the image is palettized as well we can

* use that palette for a nicer colour matching

*/

if (image->format->palette && screen->format->palette) {

SDL_SetColors(screen, image->format->palette->colors, 0,
image->format->palette->ncolors);

}

[* Blit onto the screen surface */
if(SDL_BIitSurface(image, NULL, screen, NULL) < 0)
fprintf(stderr, "BlitSurface error: %s\n", SDL_GetError());

SDL_UpdateRect(screen, 0, 0, image->w, image->h);

/* Free the allocated BMP surface */

Chapter 2. Graphics and Video

SDL_FreeSurface(image);

Drawing Directly to the Display

The following two functions can be used to get and set single pixels of a surface. They are carefully
written to work with any depth currently supported by SDL. Remember to lock the surface before
calling them, and to unlock it before calling any other SDL functions.

To convert between pixel values and their red, green, blue components, use SDL_GetRGB() and
SDL_MapRGB().

Example 2-4. getpixel()
/*

* Return the pixel value at (X, y)
* NOTE: The surface must be locked before calling this!

*/
Uint32 getpixel(SDL_Surface *surface, int x, int y)
{
int bpp = surface->format->BytesPerPixel;
/* Here p is the address to the pixel we want to retrieve */
uint8 *p = (Uint8 *)surface->pixels + y * surface->pitch + x * bpp;
switch(bpp) {
case 1:
return *p;
case 2:
return *(Uintl6 *)p;
case 3:
if(SDL_BYTEORDER == SDL_BIG_ENDIAN)
return p[0] << 16 | p[1] << 8 | p[2];
else
return p[0] | p[l] << 8 | p[2] << 16;
case 4:
return *(Uint32 *)p;
default:
return O; /* shouldn’t happen, but avoids warnings */
}
}

Chapter 2. Graphics and Video

Example 2-5. putpixel()

/*
* Set the pixel at (x, y) to the given value
* NOTE: The surface must be locked before calling this!

*/
void putpixel(SDL_Surface *surface, int x, int y, Uint32 pixel)
{
int bpp = surface->format->BytesPerPixel;
/* Here p is the address to the pixel we want to set */
Uint8 *p = (Uint8 *)surface->pixels + y * surface->pitch + x * bpp;
switch(bpp) {
case 1:
*p = pixel;
break;
case 2:
*(Uintlé *)p = pixel;
break;
case 3:
if(SDL_BYTEORDER == SDL_BIG_ENDIAN) {
p[0] = (pixel >> 16) & Oxff;
p[1] = (pixel >> 8) & Oxff;
p[2] = pixel & Oxff;
} else {
p[0] = pixel & Oxff;
p[1] = (pixel >> 8) & Oxff;
p[2] = (pixel >> 16) & Oxff;
}
break;
case 4:
*(Uint32 *)p = pixel;
break;
}
}

The following code uses the putpixel() function above to set a yellow pixel in the middle of the
screen.

Example 2-6. Using putpixel()

/* Code to set a yellow pixel at the center of the screen */

int x, v;
Uint32 yellow;

Chapter 2. Graphics and Video

/* Map the color yellow to this display (R=0xff, G=0xFF, B=0x00)
Note: If the display is palettized, you must set the palette first.

*/

yellow = SDL_MapRGB(screen->format, Oxff, Oxff, 0x00);

X
y

screen->w / 2;
screen->h [/ 2;

/* Lock the screen for direct access to the pixels */
if (SDL_MUSTLOCK(screen)) {
if (SDL_LockSurface(screen) < 0) {
fprintf(stderr, "Can't lock screen: %s\n", SDL_GetError());
return;

}
putpixel(screen, X, y, yellow);

if (SDL_MUSTLOCK(screen)) {
SDL_UnlockSurface(screen);

}
/* Update just the part of the display that we've changed */

SDL_UpdateRect(screen, x, y, 1, 1);

return;

Using OpenGL With SDL

SDL has the ability to create and use OpenGL contexts on several platforms(Linux/X11, Win32,
BeOS, MacOS Classic/Toolbox, MacOS X, FreeBSD/X11 and Solaris/X11). This allows you to use
SDL’s audio, event handling, threads and times in your OpenGL applications (a function often
performed by GLUT).

Initialisation

Initialising SDL to use OpenGL is not very different to initialising SDL normally. There are three
differences; you must paSbL_OPENGIto SDL_SetVideoMode , you must specify several GL
attributes (depth buffer size, framebuffer sizes) usbg_GL_SetAttribute and finally, if you
wish to use double buffering you must specify it as a GL attribotépy passing the
SDL_DOUBLEBUHag toSDL_SetVideoMode .

Chapter 2. Graphics and Video

Example 2-7. Initializing SDL with OpenGL

/* Information about the current video settings. */
const SDL_Videolnfo* info = NULL;

/* Dimensions of our window. */

int width = 0;

int height = 0;

/* Color depth in bits of our window. */

int bpp = 0;

/* Flags we will pass into SDL_SetVideoMode. */
int flags = 0;

[* First, initialize SDL’'s video subsystem. */
if(SDL_Init(SDL_INIT_VIDEO) < 0) {
[* Failed, exit. */
fprintf(stderr, "Video initialization failed: %s\n",
SDL_GetError());
quit_tutorial(1);
}

/* Let's get some video information. */
info = SDL_GetVideolnfo();

if(linfo) {
[* This should probably never happen. */
fprintf(stderr, "Video query failed: %s\n",
SDL_GetError());
quit_tutorial(1);

* Set our width/height to 640/480 (you would

* of course let the user decide this in a normal
* app). We get the bpp we will request from

* the display. On X11, VidMode can’'t change

* resolution, so this is probably being overly

* safe. Under Win32, ChangeDisplaySettings

* can change the bpp.

*/
width = 640;
height = 480;

bpp = info->vfmt->BitsPerPixel;

/*
* Now, we want to setup our requested
* window attributes for our OpenGL window.
* We want *at least* 5 bits of red, green
* and blue. We also want at least a 16-bit
* depth buffer.

Chapter 2. Graphics and Video

* The last thing we do is request a double
* buffered window. '1’ turns on double
* buffering, '0’ turns it off.

* Note that we do not use SDL_DOUBLEBUF in

* the flags to SDL_SetVideoMode. That does

* not affect the GL attribute state, only

* the standard 2D blitting setup.

*/

SDL_GL_SetAttribute(SDL_GL_RED_SIZE, 5);
SDL_GL_SetAttribute(SDL_GL_GREEN_SIZE, 5);
SDL_GL_SetAttribute(SDL_GL_BLUE_SIZE, 5);
SDL_GL_SetAttribute(SDL_GL_DEPTH_SIZE, 16);
SDL_GL_SetAttribute(SDL_GL_DOUBLEBUFFER, 1);

* We want to request that SDL provide us
* with an OpenGL window, in a fullscreen
* video mode.

* EXERCISE:

* Make starting windowed an option, and
* handle the resize events properly with

* glViewport.

*/

flags = SDL_OPENGL | SDL_FULLSCREEN,;

/*
* Set the video mode
*/
if(SDL_SetVideoMode(width, height, bpp, flags) == 0) {
/*
* This could happen for a variety of reasons,
* including DISPLAY not being set, the specified
* resolution not being available, etc.
*/
fprintf(stderr, "Video mode set failed: %s\n",
SDL_GetError());
quit_tutorial(1);
}

Drawing

Apart from initialisation, using OpenGL within SDL is the same as using OpenGL with any other
API, e.g. GLUT. You still use all the same function calls and data types. However if you are using a
double-buffered display, then you must @&®._GL_SwapBuffers() to swap the buffers and

Chapter 2. Graphics and Video

update the display. To request double-buffering with OpenGLSiae GL_SetAttribute with

SDL_GL_DOUBLEBUFFERNd usesDL_GL_GetAttribute

A full example code listing is now presented below.

Example 2-8. SDL and OpenGL

/*
* SDL

OpenGL Tutorial.

* (c) Michael Vance, 2000
* briareos@lokigames.com

*

* Distributed under terms of the LGPL.

*/

#include
#include
#include

#include
#include

<SDL/SDL.h>
<GL/gl.h>
<GL/glu.h>

<stdio.h>
<stdlib.h>

static GLboolean should rotate = GL_TRUE;

static void quit_tutorial(int code)

{
/*

*

*

*/

Quit SDL so we can release the fullscreen
mode and restore the previous video settings,
etc.

SDL_Quit();

[* Exit program. */
exit(code);

}

static void handle_key_down(SDL_keysym* keysym)

{

/*
*
*
*
*
*

*

*

We're only interested if 'Esc’ has
been presssed.

EXERCISE:
Handle the arrow keys and have that change the
viewing position/angle.

switch(keysym->sym) {

to see if you actually got it.

Chapter 2. Graphics and Video

case SDLK_ESCAPE:
quit_tutorial(0);
break;
case SDLK_SPACE:
should_rotate = !should_rotate;

break;
default:
break;
}
}
static void process_events(void)
{
[* Our SDL event placeholder. */
SDL_Event event;
[* Grab all the events off the queue. */
while(SDL_PollEvent(&event)) {
switch(event.type) {
case SDL_KEYDOWN:
/* Handle key presses. */
handle_key down(&event.key.keysym);
break;
case SDL_QUIT:
/* Handle quit requests (like Ctrl-c). */
quit_tutorial(0);
break;
}
}
}

static void draw_screen(void)

{

/* Our angle of rotation. */
static float angle = 0.0f;

* EXERCISE:
* Replace this awful mess with vertex
* arrays and a call to glDrawElements.

* EXERCISE:
* After completing the above, change
* it to use compiled vertex arrays.

Chapter 2. Graphics and Video

* EXERCISE:

* Verify my windings are correct here ;).

*/

static GLfloat vO[] = { -1.0f, -1.0f, 1.0f };

static GLfloat vi[] = { 1.0f, -1.0f, 1.0f };

static GLfloat v2[] = { 1.0f, 1.0f, 1.0f };

static GLfloat v3[] = { -1.0f, 1.0f, 1.0f };

static GLfloat v4[] = { -1.0f, -1.0f, -1.0f };

static GLfloat v5[] { 1.0f, -1.0f, -1.0f };

static GLfloat v6[] = { 1.0f, 1.0f, -1.0f };

static GLfloat v7[] = { -1.0f, 1.0f, -1.0f };

static GLubyte red[] = { 255, 0, 0, 255 };
static GLubyte green[] = { 0, 255, 0, 255 };
static GLubyte blue[] = 0, 0, 255, 255 }
static GLubyte white]] = { 255, 255, 255, 255 };
static GLubyte yellow[] = 0, 255, 255, 255 };
static GLubyte black[]] = 0, 0, 0, 255 };
static GLubyte orange[] = { 255, 255, 0, 255 };
static GLubyte purple[]] = { 255, 0, 255, 0}

—~
~~ e

/* Clear the color and depth buffers. */
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

/* We don’'t want to modify the projection matrix. */
glMatrixMode(GL_MODELVIEW);
glLoadldentity();

/* Move down the z-axis. */
glTranslatef(0.0, 0.0, -5.0);

/* Rotate. */
glRotatef(angle, 0.0, 1.0, 0.0);

if(should_rotate) {

if(++angle > 360.0f) {
angle = 0.0f;
}

}

/* Send our triangle data to the pipeline. */
glBegin(GL_TRIANGLES);

glColordubv(red);
glVertex3fv(vO);
glColordubv(green);
glVertex3fv(v1);
glColord4ubv(blue);

10

glVertex3fv(v2);

glColordubv(red);
glVertex3fv(vO);
glColord4ubv(blue);
glVertex3fv(v2);
glColor4ubv(white);
glVertex3fv(v3);

glColordubv(green);
glVertex3fv(v1);
glColord4ubv(black);
glVertex3fv(v5);
glColor4ubv(orange);
glVertex3fv(v6);

glColordubv(green);
glVertex3fv(v1);
glColordubv(orange);
glVertex3fv(v6);
glColord4ubv(blue);
glVertex3fv(v2);

glColordubv(black);
glVertex3fv(v5);
glColordubv(yellow);
glVertex3fv(v4);
glColordubv(purple);
glVertex3fv(v7);

glColordubv(black);
glVertex3fv(v5);
glColordubv(purple);
glVertex3fv(v7);
glColor4ubv(orange);
glVertex3fv(v6);

glColordubv(yellow);
glVertex3fv(v4);
glColordubv(red);
glVertex3fv(vO);
glColor4ubv(white);
glVertex3fv(v3);

glColordubv(yellow);
glVertex3fv(v4);
glColordubv(white);
glVertex3fv(v3);
glColordubv(purple);

Chapter 2. Graphics and Video

11

glVertex3fv(v7);

glColordubv(white);
glVertex3fv(v3);
glColord4ubv(blue);
glVertex3fv(v2);
glColor4ubv(orange);
glVertex3fv(v6);

glColordubv(white);
glVertex3fv(v3);
glColor4ubv(orange);
glVertex3fv(v6);
glColordubv(purple);
glVertex3fv(v7);

glColordubv(green);
glVertex3fv(v1);
glColordubv(red);
glVertex3fv(vO);
glColordubv(yellow);
glVertex3fv(v4);

glColordubv(green);
glVertex3fv(vl);
glColordubv(yellow);
glVertex3fv(v4);
glColordubv(black);
glVertex3fv(v5);

glEnd();

* EXERCISE:

* Draw text telling the user that 'Spc’
* pauses the rotation and 'Esc’ quits.
* Do it using vetors and textured quads.

* Swap the buffers. This this tells the driver to
* render the next frame from the contents of the
* back-buffer, and to set all rendering operations
* to occur on what was the front-buffer.

* Double buffering prevents nasty visual tearing
* from the application drawing on areas of the
* screen that are being updated at the same time.

Chapter 2. Graphics and Video

12

}

SDL_GL_SwapBuffers();

static void setup_opengl(int width, int height)

{

}

float ratio = (float) width / (float) height;

/* Our shading model--Gouraud (smooth). */
glShadeModel(GL_SMOOTH);

[* Culling. */

glCullFace(GL_BACK);
glFrontFace(GL_CCW);
glEnable(GL_CULL_FACE);

/* Set the clear color. */
glClearColor(0, 0, 0, 0);

/* Setup our viewport. */
glViewport(0, 0, width, height);

/*

* Change to the projection matrix and set
* our viewing volume.

*

glMatrixMode(GL_PROJECTION);
glLoadldentity();

/*

* EXERCISE:

* Replace this with a call to glFrustum.
*/

gluPerspective(60.0, ratio, 1.0, 1024.0);

int main(int argc, char* argv[])

{

/* Information about the current video settings. */
const SDL_Videolnfo* info = NULL;

/* Dimensions of our window. */

int width = 0;

int height = 0;

/* Color depth in bits of our window. */

int bpp = 0;

/* Flags we will pass into SDL_SetVideoMode. */
int flags = 0;

/* First, initialize SDL’s video subsystem. */
if(SDL_Init(SDL_INIT_VIDEO) < 0) {
/* Failed, exit. */

Chapter 2. Graphics and Video

13

fprintf(stderr, "Video initialization failed: %s\n",
SDL_GetError());
quit_tutorial(1);
}

/* Let's get some video information. */
info = SDL_GetVideolnfo();

if(linfo) {
[* This should probably never happen. */
fprintf(stderr, "Video query failed: %s\n",
SDL_GetError());
quit_tutorial(1);

* Set our width/height to 640/480 (you would

* of course let the user decide this in a normal
* app). We get the bpp we will request from

* the display. On X11, VidMode can't change

* resolution, so this is probably being overly

* safe. Under Win32, ChangeDisplaySettings

* can change the bpp.

*/
width = 640;
height = 480;

bpp = info->vimt->BitsPerPixel;

* Now, we want to setup our requested

* window attributes for our OpenGL window.
* We want *at least* 5 bits of red, green

* and blue. We also want at least a 16-bit
* depth buffer.

* The last thing we do is request a double
* puffered window. '1’ turns on double
* buffering, '0’ turns it off.

* Note that we do not use SDL_DOUBLEBUF in
* the flags to SDL_SetVideoMode. That does

* not affect the GL attribute state, only

* the standard 2D blitting setup.

*/

SDL_GL_SetAttribute(SDL_GL_RED_SIZE, 5);
SDL_GL_SetAttribute(SDL_GL_GREEN_SIZE, 5);
SDL_GL_SetAttribute(SDL_GL_BLUE_SIZE, 5);
SDL_GL_SetAttribute(SDL_GL_DEPTH_SIZE, 16);

SDL_GL_SetAttribute(SDL_GL_DOUBLEBUFFER, 1);

Chapter 2. Graphics and Video

14

Chapter 2. Graphics and Video

* We want to request that SDL provide us
* with an OpenGL window, in a fullscreen
* video mode.

* EXERCISE:

* Make starting windowed an option, and
* handle the resize events properly with

* glViewport.

*

flags = SDL_OPENGL | SDL_FULLSCREEN;

/*
* Set the video mode
*/
if(SDL_SetVideoMode(width, height, bpp, flags) == 0) {
/*
* This could happen for a variety of reasons,
* including DISPLAY not being set, the specified
* resolution not being available, etc.
*/
fprintf(stderr, "Video mode set failed: %s\n",
SDL_GetError());
quit_tutorial(1);
}
/*

* At this point, we should have a properly setup
* double-buffered window for use with OpenGL.
*/

setup_opengl(width, height);

/*
* Now we want to begin our normal app process--
* an event loop with a lot of redrawing.

*/
while(1) {
[* Process incoming events. */
process_events();
[* Draw the screen. */
draw_screen();
}
/*
* EXERCISE:

* Record timings using SDL_GetTicks() and
* and print out frames per second at program
* end.

15

Chapter 2. Graphics and Video

*/

/* Never reached. */
return O;

16

Chapter 3. Input handling

Handling Joysticks

Initialization

The first step in using a joystick in a SDL program is to initialize the Joystick subsystems of SDL.
This done by passing tr&DL_INIT_JOYSTICK flag toSDL_Init . The joystick flag will usually be
used in conjunction with other flags (like the video flag) because the joystick is usually used to
control something.

Example 3-1. Initializing SDL with Joystick Support

if (! SDL_Init(SDL_INIT_VIDEO | SDL_INIT_JOYSTICK))

{
fprintf(stderr, "Couldn't initialize SDL: %s\n", SDL_GetError());
exit(1);

}

This will attempt to start SDL with both the video and the joystick subsystems activated.

Querying

If we have reached this point then we can safely assume that the SDL library has been initialized and
that the Joystick subsystem is active. We can now call some video and/or sound functions to get
things going before we need the joystick. Eventually we have to make sure that there is actually a
joystick to work with. It's wise to always check even if you know a joystick will be present on the
system because it can also help detect when the joystick is unplugged. The function used to check
for joysticks isSSDL_NumJoysticks

This function simply returns the number of joysticks available on the system. If it is at least one then
we are in good shape. The next step is to determine which joystick the user wants to use. If the
number of joysticks available is only one then it is safe to assume that one joystick is the one the user
wants to use. SDL has a function to get the name of the joysticks as assigned by the operations
system and that function 8DL_JoystickName . The joystick is specified by an index where 0 is

the first joystick and the last joystick is the number returne@by_NumJoysticks - 1. In the
demonstration a list of all available joysticks is printed to stdout.

Example 3-2. Querying the Number of Available Joysticks

printf("%i joysticks were found.\n\n", SDL_NumJoysticks());
printf("The names of the joysticks are:\n");

17

Chapter 3. Input handling

for(i=0; i < SDL_NumJoysticks(); i++)

{
printf(" %s\n", SDL_JoystickName(i));

}

Opening a Joystick and Receiving Joystick Events

SDL’s event driven architecture makes working with joysticks a snap. Joysticks can trigger 4
different types of events:

SDL_JoyAxisEvent Occurs when an axis changes

SDL_JoyBallEvent Occurs when a joystick trackball’s position changes
SDL_JoyHatEvent Occurs when a hat's position changes
SDL_JoyButtonEven®ccurs when a button is pressed or released

Events are received from all joysticks opened. The first thing that needs to be done in order to
receive joystick events is to ca8DL_JoystickEventState with the SDL_ENABLElag. Next you
must open the joysticks that you want to receive envents from. This is done with the
SDL_JoystickOpen function. For the example we are only interested in events from the first
joystick on the system, regardless of what it may be. To receive events from it we would do this:

Example 3-3. Opening a Joystick
SDL_Joystick *joystick;

SDL_JoystickEventState(SDL_ENABLE);
joystick = SDL_JoystickOpen(0);

If we wanted to receive events for other joysticks we would open them with calls to
SDL_JoystickOpen just like we opened joystick 0, except we would store the SDL_Joystick
structure they return in a different pointer. We only need the joystick pointer when we are querying
the joysticks or when we are closing the joystick.

Up to this point all the code we have is used just to initialize the joysticks in order to read values at

run time. All we need now is an event loop, which is something that all SDL programs should have
anyway to receive the systems quit events. We must now add code to check the event loop for at least
some of the above mentioned events. Let’'s assume our event loop looks like this:

SDL_Event event;
/* Other initializtion code goes here */

/* Start main game loop here */

while(SDL_PollEvent(&event))
{

18

Chapter 3. Input handling

switch(event.type)

{
case SDL_KEYDOWN:

/* handle keyboard stuff here */
break;

case SDL_QUIT:

/* Set whatever flags are necessary to */
/* end the main game loop here */
break;

}
/* End loop here */

To handle Joystick events we merely add cases for them, first we'll add axis handling code. Axis
checks can get kinda of tricky because alot of the joystick events received are junk. Joystick axis
have a tendency to vary just a little between polling due to the way they are designed. To compensate
for this you have to set a threshold for changes and ignore the events that have’'nt exceeded the
threshold. 10% is usually a good threshold value. This sounds a lot more complicated than it is. Here
is the Axis event handler:

Example 3-4. Joystick Axis Events

case SDL_JOYAXISMOTION: /* Handle Joystick Motion */
if ((eventjaxis.value < -3200) || (event.jaxis.value > 3200))

{

[* code goes here */

}

break;

Another trick with axis events is that up-down and left-right movement are two different sets of axes.
The most important axis is axis 0 (left-right) and axis 1 (up-down). To handle them seperatly in the
code we do the following:

Example 3-5. More Joystick Axis Events

case SDL_JOYAXISMOTION: /* Handle Joystick Motion */
if ((eventjaxis.value < -3200) || (event.jaxis.value > 3200))

{
if(eventjaxis.axis == 0)
{
/* Left-right movement code goes here */
}
if(eventjaxis.axis == 1)
{

/* Up-Down movement code goes here */

19

Chapter 3. Input handling

}
}

break;

Ideally the code here should useent.jaxis.value to scale something. For example lets

assume you are using the joystick to control the movement of a spaceship. If the user is using an
analog joystick and they push the stick a little bit they expect to move less than if they pushed it a lot.
Designing your code for this situation is preferred because it makes the experience for users of
analog controls better and remains the same for users of digital controls.

If your joystick has any additional axis then they may be used for other sticks or throttle controls and
those axis return values too just with differ@vient.jaxis.axis values.

Button handling is simple compared to the axis checking.

Example 3-6. Joystick Button Events

case SDL_JOYBUTTONDOWN: /* Handle Joystick Button Presses */
if (event.jbutton.button == 0)

{

[* code goes here */
}
break;

Button checks are simpler than axis checks because a button can only be pressed or not pressed. The
SDL_JOYBUTTONDOVeMent is triggered when a button is pressed andthie JOYBUTTONUBvent

is fired when a button is released. We do have to know what button was pressed though, that is done
by reading theevent.jbutton.button field.

Lastly when we are through using our joysticks we should close them with a call to
SDL_JoystickClose . To close our opened joystick O we would do this at the end of our program:

SDL_JoystickClose(joystick);

Advanced Joystick Functions

That takes care of the controls that you can count on being on every joystick under the sun, but there
are a few extra things that SDL can support. Joyballs are next on our list, they are alot like axis we a
few minor differences. Joyballs store relative changes unlike the the absolute postion stored in a axis
event. Also one trackball event contains both the change in x and they change in'y. Our case for it is
as follows:

Example 3-7. Joystick Ball Events

case SDL_JOYBALLMOTION: /* Handle Joyball Motion */

20

Chapter 3. Input handling

if(event.jball.ball == 0)
{
/* ball handling */

}

break;

The above checks the first joyball on the joystick. The change in position will be stored in
event.jball.xrel andevent.jball.yrel

Finally we have the hat event. Hats report only the direction they are pushed in. We check hat’s
position with the bitmasks:

SDL_HAT_CENTERED

SDL_HAT_UP

SDL_HAT_RIGHT

SDL_HAT_DOWN

SDL_HAT_LEFT

Also there are some predefined combinations of the above:
SDL_HAT_RIGHTUP

SDL_HAT_RIGHTDOWN

SDL_HAT_LEFTUP

SDL_HAT_LEFTDOWN

Our case for the hat may resemble the following:

Example 3-8. Joystick Hat Events

case SDL_JOYHATMOTION: /* Handle Hat Motion */
if (eventjhat.hat | SDL_HAT_UP)

{
[* Do up stuff here */
}
if (eventjhat.hat | SDL_HAT_LEFT)
{
[* Do left stuff here */
}
if (eventjhat.hat | SDL_HAT_RIGHTDOWN)
{
/* Do right and down together stuff here */
}
break;

In addition to the queries for number of joysticks on the system and their names there are additional
functions to query the capabilities of attached joysticks:

SDL_JoystickNumAxes Returns the number of joysitck axes
SDL_JoystickNumButtons Returns the number of joysitck buttons
SDL_JoystickNumBalls Returns the number of joysitck balls

21

Chapter 3. Input handling

SDL_JoystickNumHats Returns the number of joysitck hats
To use these functions we just have to pass in the joystick structure we got when we opened the
joystick. For Example:

Example 3-9. Querying Joystick Characteristics

int number_of_buttons;
SDL_Joystick *joystick;

joystick = SDL_JoystickOpen(0);
number_of_buttons = SDL_JoystickNumButtons(joystick);

This block of code would get the number of buttons on the first joystick in the system.

Handling the Keyboard

Keyboard Related Structures

It should make it a lot easier to understand this tutorial is you are familiar with the data types
involved in keyboard access, so I'll explain them first.

SDLKey

SDLKey is an enumerated type defined in SDL/include/SDL_keysym.h and detailedEach
SDLKey symbol represents a keSDLK_a corresponds to the 'a’ key on a keyboasihLK_SPACE
corresponds to the space bar, and so on.

SDLMod

SDLMod is an enumerated type, similar to SDLKey, however it enumerates keyboard modifiers
(Control, Alt, Shift). The full list of modifier symbols isere SDLMod values can be AND'd
together to represent several modifiers.

SDL_keysym

typedef struct{
Uint8 scancode;
SDLKey sym,;
SDLMod mod;
Uintl6 unicode;
} SDL_keysym;

22

Chapter 3. Input handling

The SDL_keysym structure describes a key press or a key releasscditeode field is hardware
specific and should be ignored unless you know what your doingsyimefield is the SDLKey

value of the key being pressed or released. i field describes the state of the keyboard
modifiers at the time the key press or release occurred. So a vakaid® NUM | KMOD_CAPS |
KMOD_LSHIFTwould mean that Numlock, Capslock and the left shift key were all press (or enabled
in the case of the lock keys). Finally, thaicode field stores the 16-bit unicode value of the key.

Note: It should be noted and understood that this field is only valid when the SDL_keysym is
describing a key press, not a key release. Unicode values only make sense on a key press
because the unicode value describes an international character and only key presses produce
characters. More information on Unicode can be found at www.unicode.org
(http://www.unicode.org)

Note: Unicode translation must be enabled using the SDL_EnableUNICODE function.

SDL_KeyboardEvent

typedef struct{
uint8 type;
uint8 state;
SDL_keysym keysym;
} SDL_KeyboardEvent;

The SDL_KeyboardEvent describes a keyboard event (obviously)kdhemember of the
SDL_Eventunion is a SDL_KeyboardEvent structure. Tigpe field specifies whether the event is
a key releaseSDL_KEYUPR or a key press3DL_KEYDOWNvent. Thestate is largely redundant, it
reports the same information as tiype field but uses different valueSPL_RELEASEand
SDL_PRESSED Thekeysym contains information of the key press or release that this event
represents (see above).

Reading Keyboard Events

Reading keybaord events from the event queue is quite simple (the event queue and using it is
describecherg. We read events usirgDL_PollEvent in awhile() loop and check for
SDL_KEYUPandSDL_KEYDOWBSVents using awitch statement, like so:

Example 3-10. Reading Keyboard Events

SDL_Event event;

23

Chapter 3. Input handling

/* Poll for events. SDL_PollEvent() returns O when there are no */
/* more events on the event queue, our while loop will exit when */
/* that occurs. */
while(SDL_PollEvent(&event)){
/* We are only worried about SDL_KEYDOWN and SDL_KEYUP events */
switch(event.type){
case SDL_KEYDOWN:
printf("Key press detected\n");
break;

case SDL_KEYUP:
printf("Key release detected\n");
break;

default:
break;

This is a very basic example. No information about the key press or release is interpreted. We will
explore the other extreme out our first full example below - reporting all available information about
a keyboard event.

A More Detailed Look

Before we can read events SDL must be initialised 8ith._Init and a video mode must be set
usingSDL_SetVideoMode . There are, however, two other functions we must use to obtain all the
information required. We must enable unicode translation by caflibig EnableUNICODE(1) and
we must convert SDLKey values into something printable, usibg GetkeyName

Note: It is useful to note that unicode values < 0x80 translate directly a characters ASCII value.
THis is used in the example below

Example 3-11. Interpreting Key Event Information

#include "SDL.h"
/* Function Prototypes */

void PrintKeylnfo(SDL_KeyboardEvent *key);
void PrintModifiers(SDLMod mod);

24

Chapter 3. Input handling

/* main */
int main(int argc, char *argv[] X

SDL_Event event;
int quit = O;

[* Initialise SDL */

if(SDL_Init(SDL_INIT_VIDEO))
fprintf(stderr, "Could not initialise SDL: %s\n", SDL_GetError());
exit(-1);

}

[* Set a video mode */

if(!SDL_SetVideoMode(320, 200, 0, 0)){
fprintf(stderr, "Could not set video mode: %s\n", SDL_GetError());
SDL_Quit();
exit(-1);

}

/* Enable Unicode translation */
SDL_EnableUNICODE(1);

/* Loop until an SDL_QUIT event is found */
while(!quit){

/* Poll for events */
while(SDL_PollEvent(&event)){

switch(event.type){
[* Keyboard event */
[* Pass the event data onto PrintKeylnfo() */
case SDL_KEYDOWN:
case SDL_KEYUP:
PrintkeyInfo(&event.key);
break;

/* SDL_QUIT event (window close) */
case SDL_QUIT:

quit = 1;

break;

default:
break;

25

Chapter 3. Input handling

[* Clean up */
SDL_Quit();
exit(0);

}

/* Print all information about a key event */
void PrintKeyInfo(SDL_KeyboardEvent *key){
[* Is it a release or a press? */
if(key->type == SDL_KEYUP)
printf("Release:- ");
else
printf("Press:- ");

[* Print the hardware scancode first */
printf("Scancode: 0x%02X", key->keysym.scancode);
[* Print the name of the key */
printf(", Name: %s", SDL_GetKeyName(key->keysym.sym));
/* We want to print the unicode info, but we need to make */
[* sure its a press event first (remember, release events */
[* don’'t have unicode info */
if(key->type == SDL_KEYDOWN)
/* If the Unicode value is less than 0x80 then the */
/* unicode value can be used to get a printable */
/* representation of the key, using (char)unicode. */
printf(", Unicode: ");
if(key->keysym.unicode < 0x80 && key->keysym.unicode > 0){
printf("%c (0x%04X)", (char)key->keysym.unicode,
key->keysym.unicode);

}
elsef
printf("? (0x%04X)", key->keysym.unicode);
}
}
printf("\n");

I* Print modifier info */
PrintModifiers(key->keysym.mod);
}

[* Print modifier info */
void PrintModifiers(SDLMod mod)
printf("Modifers: ");

[* If there are none then say so and return */
if(mod == KMOD_NONE){

printf("None\n");

return;

26

Chapter 3. Input handling

[* Check for the presence of each SDLMod value */

[* This looks messy, but there really isn’t */
[* a clearer way. */
if(mod & KMOD_NUM) printf("NUMLOCK ");

if(mod & KMOD_CAPS) printf("CAPSLOCK ");
ift mod & KMOD_LCTRL) printf("LCTRL ");
if(mod & KMOD_RCTRL) printf("RCTRL ");
if(mod & KMOD_RSHIFT) printf("RSHIFT ");
if(mod & KMOD_LSHIFT) printf("LSHIFT ");
if(mod & KMOD_RALT) printf("RALT ");

ift mod & KMOD_LALT) printf("LALT ");

if(mod & KMOD_CTRL) printf("CTRL ");

ift mod & KMOD_SHIFT) printf("SHIFT ");

iflt mod & KMOD_ALT) printf("ALT ");

printf("\n");

Game-type Input

| have found that people using keyboard events for games and other interactive applications don't
always understand one fundemental point.

Keyboard eventsnly take place when a keys state changes from being unpressed to pressed, and vice

versa.

Imagine you have an image of an alien that you wish to move around using the cursor keys - when
you pressed the left arrow key you want him to slide over to the left, when you press the down key
you want him to slide down the screen. Examine the following code, it highlights and error that
many people have made.

/* Alien screen coordinates */
int alien_x=0, alien_y=0;

/* Initialise SDL and video modes and all that */

/* Main game loop */
[* Check for events */
while(SDL_PollEvent(&event)){
switch(event.type){
/* Look for a keypress */
case SDL_KEYDOWN:

/* Check the SDLKey values and move change the coords */
switch(event.key.keysym.sym){
case SDLK_LEFT:
alien_x -= 1;

27

Chapter 3. Input handling

break;

case SDLK_RIGHT:
alien_x += 1;
break;

case SDLK_UP:
alien_y -= 1;
break;

case SDLK_DOWN:
alien_y += 1;
break;

default:
break;

At first glance you may think this is a perfectly reasonable piece of code for the task, butitisn't.
Like | said keyboard events only occur when a key changes state, so the user would have to press and
release the left cursor key 100 times to move the alien 100 pixels to the left.

To get around this problem we must not use the events to change the position of the alien, we use the
events to set flags which are then used in a seperate section of code to move the alien. Something
like this:

Example 3-12. Proper Game Movement

/* Alien screen coordinates */
int alien_x=0, alien_y=0;
int alien_xvel=0, alien_yvel=0;

/* Initialise SDL and video modes and all that */

/* Main game loop */
/* Check for events */
while(SDL_PollEvent(&event)){
switch(event.type){
/* Look for a keypress */
case SDL_KEYDOWN:
/* Check the SDLKey values and move change the coords */
switch(event.key.keysym.sym)
case SDLK LEFT:

alien_xvel = -1;
break;

case SDLK_RIGHT:
alien_xvel = 1;

28

Chapter 3. Input handling

break;
case SDLK_UP:
alien_yvel = -1;
break;
case SDLK_DOWN:
alien_yvel = 1,
break;
default:
break;
}
break;
/* We must also use the SDL_KEYUP events to zero the x */
/* and y velocity variables. But we must also be */
/* careful not to zero the velocities when we shouldn’t*/
case SDL_KEYUP:
switch(event.key.keysym.sym){
case SDLK_LEFT:
/* We check to make sure the alien is moving */
/¥ to the left. If it is then we zero the */
/* velocity. If the alien is moving to the */
/* right then the right key is still press */
/* so we don't tocuh the velocity */
if(alien_xvel < 0)
alien_xvel = 0;
break;
case SDLK_RIGHT:

if(alien_xvel > 0)
alien_xvel = 0;
break;
case SDLK UP:
if(alien_yvel < 0)
alien_yvel = 0;
break;
case SDLK_DOWN:
if(alien_yvel > 0)
alien_yvel = 0;
break;
default:
break;
}
break;
default:
break;

/* Update the alien position */

29

Chapter 3. Input handling

alien_x += alien_xvel;
alien_y += alien_yvel;

As can be seen, we use two extra variables, alien_xvel and alien_yvel, which represent the motion of
the ship, it is these variables that we update when we detect keypresses and releases.

30

Chapter 4. Examples

Introduction

For the moment these examples are taken directly from the old SDL documentation. By the 1.2
release these examples should hopefully deal with most common SDL programming problems.

Event Examples

Filtering and Handling Events

#include <stdio.h>
#include <stdlib.h>

#include "SDL.h"

/* This function may run in a separate event thread */
int FilterEvents(const SDL_Event *event) {
static int boycott = 1;

/* This quit event signals the closing of the window */

if ((event->type == SDL_QUIT) && boycott) {
printf("Quit event filtered out -- try again.\n");
boycott = 0;
return(0);

}

if (event->type == SDL_MOUSEMOTION) {
printf("Mouse moved to (%d,%d)\n",

event->motion.x, event->motion.y);

return(0); /* Drop it, we've handled it */

}

return(1);

}

int main(int argc, char *argv[])

{

SDL_Event event;
/* Initialize the SDL library (starts the event loop) */

if (SDL_Init(SDL_INIT_VIDEO) < 0) {
fprintf(stderr,

31

Chapter 4. Examples

"Couldn't initialize SDL: %s\n", SDL_GetError());
exit(1);
}

/* Clean up on exit, exit on window close and interrupt */
atexit(SDL_Quit);

/* Ignore key events */
SDL_EventState(SDL_KEYDOWN, SDL_IGNORE);
SDL_EventState(SDL_KEYUP, SDL_IGNORE);

/* Filter quit and mouse motion events */
SDL_SetEventFilter(FilterEvents);

/* The mouse isn't much use unless we have a display for reference */
if (SDL_SetVideoMode(640, 480, 8, 0) == NULL) {
fprintf(stderr, "Couldn't set 640x480x8 video mode: %s\n",
SDL_GetError());
exit(1);
}

[* Loop waiting for ESC+Mouse_Button */
while (SDL_WaitEvent(&event) >= 0) {
switch (event.type) {
case SDL_ACTIVEEVENT: {
if (event.active.state & SDL_APPACTIVE) {
if (event.active.gain) {
printf("App activated\n");
} else {
printf("App iconified\n");
}
}
}

break;

case SDL_MOUSEBUTTONDOWN: {
uUint8 *keys;

keys = SDL_GetKeyState(NULL);
if (keys[SDLK_ESCAPE] == SDL_PRESSED) {
printf("Bye bye...\n");

exit(0);
}
printf("Mouse button pressed\n");
}
break;

case SDL_QUIT: {
printf("Quit requested, quitting.\n");

32

Chapter 4. Examples

exit(0);
}
break;
}
}

[* This should never happen */
printf("SDL_WaitEvent error: %s\n", SDL_GetError());
exit(1);

Audio Examples

Opening the audio device

SDL_AudioSpec wanted;
extern void fill_audio(void *udata, Uint8 *stream, int len);

/* Set the audio format */

wanted.freq = 22050;

wanted.format = AUDIO_S16;

wanted.channels = 2; /* 1 = mono, 2 = stereo */
wanted.samples = 1024; /* Good low-latency value for callback */
wanted.callback = fill_audio;

wanted.userdata = NULL;

/* Open the audio device, forcing the desired format */

if (SDL_OpenAudio(&wanted, NULL) < 0) {
fprintf(stderr, "Couldn’t open audio: %s\n", SDL_GetError());
return(-1);

}

return(0);

Playing audio

static Uint8 *audio_chunk;
static Uint32 audio_len;
static Uint8 *audio_pos;

33

Chapter 4. Examples

/* The audio function callback takes the following parameters:
stream: A pointer to the audio buffer to be filled
len: The length (in bytes) of the audio buffer
*
void fill_audio(void *udata, Uint8 *stream, int len)
{
/* Only play if we have data left */
if (audio_len == 0)
return;

[* Mix as much data as possible */

len = (len > audio_len ? audio_len : len);
SDL_MixAudio(stream, audio_pos, len, SDL_MIX_MAXVOLUME)
audio_pos += len;

audio_len -= len;

}

/* Load the audio data ... */
audio_pos = audio_chunk;

[* Let the callback function play the audio chunk */
SDL_PauseAudio(0);

/* Do some processing */

/* Wait for sound to complete */
while (audio_len > 0) {
SDL_Delay(100); /* Sleep 1/10 second */

}
SDL_CloseAudio();

CDROM Examples

34

Chapter 4. Examples

Listing CD-ROM drives

#include "SDL.h"

[* Initialize SDL first */

if (SDL_Init(SDL_INIT_CDROM) < 0) {
fprintf(stderr, "Couldn't initialize SDL: %s\n",SDL_GetError());
exit(1);

}

atexit(SDL_Quit);

/* Find out how many CD-ROM drives are connected to the system */
printf("Drives available: %d\n", SDL_CDNumDrives());
for (i=0; i<SDL_CDNumbDrives(); ++i) {
printf("Drive %d: \"%s\"\n", i, SDL_CDName(i));
}

Opening the default drive

SDL_CD *cdrom;
CDstatus status;
char *status_str;

cdrom = SDL_CDOpen(0);
if (cdrom == NULL) {
fprintf(stderr, "Couldn’t open default CD-ROM drive: %s\n",
SDL_GetError());
exit(2);
}

status = SDL_CDStatus(cdrom);
switch (status) {
case CD_TRAYEMPTY:
status_str = "tray empty";
break;
case CD_STOPPED:
status_str = "stopped";
break;
case CD_PLAYING:
status_str = "playing";
break;
case CD_PAUSED:
status_str = "paused";
break;

35

Chapter 4. Examples

case CD_ERROR:
status_str = "error state";
break;
}
printf("Drive status: %s\n", status_str);
if (status >= CD_PLAYING) {
int m, s, f;
FRAMES_TO_MSF(cdrom->cur_frame, &m, &s, &f);
printf("Currently playing track %d, %d:%2.2d\n",
cdrom->track[cdrom->cur_track].id, m, s);

Listing the tracks on a CD

SDL_CD *cdrom; /* Assuming this has already been set.. */
int i
int m, s, f;

SDL_CDsStatus(cdrom);

printf("Drive tracks: %d\n", cdrom->numtracks);

for (i=0; i<cdrom->numtracks; ++i) {
FRAMES_TO_MSF(cdrom->track]i].length, &m, &s, &f);
if (f>0)

++S;

printf("\tTrack (index %d) %d: %d:%2.2d\n", i,
cdrom->track[i].id, m, s);

Play an entire CD

SDL_CD *cdrom; /* Assuming this has already been set.. */

/I Play entire CD:
if (CD_INDRIVE(SDL_CDStatus(cdrom)))
SDL_CDPlayTracks(cdrom, 0, 0, 0, 0);

/I Play last track:
if (CD_INDRIVE(SDL_CDStatus(cdrom))) {
SDL_CDPlayTracks(cdrom, cdrom->numtracks-1, 0, 0, 0);

}

36

/I Play first and second track and 10 seconds of third track:

if (CD_INDRIVE(SDL_CDStatus(cdrom)))

SDL_CDPlayTracks(cdrom, 0, 0, 2, 10);

Time Examples

Time based game loop

#define TICK_INTERVAL 30

Uint32 TimeLeft(void)

{
static Uint32 next_time = 0;
Uint32 now;

now = SDL_GetTicks();

if (next_time <= now) {
next_time = now+TICK_INTERVAL;
return(0);

}

return(next_time-now);

/* main game loop

while (game_running) {
UpdateGameState();
SDL_Delay(TimeLeft());

Chapter 4. Examples

37

ll. SDL Reference

Chapter 5. General

Before SDL can be used in a program it must be initialized ®ibh._Init . SDL_Init initializes all

the subsystems that the user requests (video, audio, joystick, timers and/or cdrom). Once SDL is
initialized with SDL_Init subsystems can be shut down and initialized as needed using
SDL_InitSubSystem andSDL_QuitSubSystem .

SDL must also be shut down before the program exits to make sure it cleans up correctly. Calling
SDL_Quit shuts down all subsystems and frees any resources allocated to SDL.

SDL_ Init

Name
SDL_Init — Initializes SDL

Synopsis

#include "SDL.h"
int SDL_Init (Uint32 flags);

Description

Initializes SDL. This should be called before all other SDL functions. fldgs parameter
specifies what part(s) of SDL to initialize.

SDL_INIT_TIMER Initializes thetimer subsystem.
SDL_INIT_AUDIO Initializes theaudiosubsystem.
SDL_INIT_VIDEO Initializes thevideosubsystem.
SDL_INIT_CDROM Initializes thecdromsubsystem.
SDL_INIT_JOYSTICK Initializes thejoystick subsystem.
SDL_INIT_EVERYTHING Initialize all of the above.
SDL_INIT_NOPARACHUTE Prevents SDL from catching fatal signals.
SDL_INIT_EVENTTHREAD

39

Return Value

Returns -1 on an error or 0 on success.

See Also

SDL_Quit , SDL_InitSubSystem

SDL_Init

40

SDL_InitSubSystem

Name

SDL_InitSubSystem — Initialize subsystems
Synopsis

#include "SDL.h"
int SDL_InitSubSystem (Uint32 flags);

Description

After SDL has been initialized witBDL_Init you may initialize uninitialized subsystems with

SDL_InitSubSystem . Theflags parameter is the same as that useflimn._Init

Examples

/* Seperating Joystick and Video initialization. */
SDL_Init(SDL_INIT_VIDEO);

SDL_SetVideoMode(640, 480, 16, SDL_DOUBLEBUF|SDL_FULLSCREEN);
/* Do Some Video stuff */

/* Initialize the joystick subsystem */
SDL_InitSubSystem(SDL_INIT_JOYSTICK);

/* Do some stuff with video and joystick */

/* Shut them both down */
SDL_Quit();

41

SDL_InitSubSystem

Return Value

Returns -1 on an error or 0 on success.

See Also

SDL_Init , SDL_Quit , SDL_QuitSubSystem

42

SDL_QuitSubSystem

Name

SDL_QuitSubSystem — Shut down a subsystem
Synopsis
#include "SDL.h"

void SDL_QuitSubSystem (Uint32 flags);

Description

SDL_QuitSubSystem allows you to shut down a subsystem that has been previously initialized by
SDL_Init or SDL_InitSubSystem . Theflags tells SDL_QuitSubSystem which subsystems to
shut down, it uses the same values that are pass&dLtanit

See Also

SDL_Quit , SDL_Init , SDL_InitSubSystem

43

SDL_Quit

Name
SDL_Quit — Shut down SDL

Synopsis

#include "SDL.h"
void SDL_Quit (void);

Description

SDL_Quit shuts down all SDL subsystems and frees the resources allocated to them. This should
always be called before you exit. For the sake of simplicity you caBBEetQuit as youratexit
call, like:

SDL_Init(SDL_INIT_VIDEO|SDL_INIT_AUDIO);
atexit(SDL_Quit);

Note: While using atexit maybe be fine for small programs, more advanced users should shut
down SDL in their own cleanup code. Plus, using atexit in a library is a sure way to crash
dynamically loaded code

See Also

SDL_QuitSubsystem , SDL_Init

44

SDL_Wasinit

Name

SDL_Waslnit — Check which subsystems are initialized
Synopsis

#include "SDL.h"
Uint32 SDL_Waslnit (Uint32 flags);

Description

SDL_Waslnit allows you to see which SDL subsytems have hieéralized. flags is a bitwise
OR’d combination of the subsystems you wish to check &&e Init for a list of subsystem flags).

Return Value

SDL_Waslnit returns a bitwised OR’d combination of the initialized subsystems.

Examples

/* Here are several ways you can use SDL_Waslnit() */

/* Get init data on all the subsystems */
Uint32 subsystem_init;

subsystem_init=SDL_WasInit(SDL_INIT_EVERYTHING);
if(subsystem_init&SDL_INIT_VIDEO)
printf("Video is initialized.\n");

else
printf("Video is not initialized.\n");

/* Just check for one specfic subsystem */

if(SDL_WaslInit(SDL_INIT_VIDEO)!=0)

45

SDL_Waslnit

printf("Video is initialized.\n");
else
printf("Video is not initialized.\n");

/* Check for two subsystems */

Uint32 subsystem_mask=SDL_INIT_VIDEO|SDL_INIT_AUDIO;

if(SDL_WaslInit(subsystem_mask)==subsystem_mask)
printf("Video and Audio initialized.\n");

else
printf("Video and Audio not initialized.\n");

See Also

SDL_Init , SDL_Subsystem

46

Chapter 6. Video

SDL presents a very simple interface to the display framebuffer. The framebuffer is represented as an
offscreen surface to which you can write directly. If you want the screen to show what you have
written, call theupdatefunction which will guarantee that the desired portion of the screen is

updated.

Before you call any of the SDL video functions, you must first call SDL_Init(SDL_INIT_VIDEO),
which initializes the video and events in the SDL library. Check the return code, which should be O,
to see if there were any errors in starting up.

If you use both sound and video in your application, you need to call SDL_Init(SDL_INIT_AUDIO |
SDL_INIT_VIDEO) before opening the sound device, otherwise under Win32 DirectX, you won't
be able to set full-screen display modes.

After you have initialized the library, you can start up the video display in a number of ways. The
easiest way is to pick a common screen resolution and depth and just initialize the video, checking
for errors. You will probably get what you want, but SDL may be emulating your requested mode
and converting the display on update. The best way tgtery, for the best video mode closest to the
desired one, and thaonvertyour images to that pixel format.

SDL currently supports any bit deptk= 8 bits per pixel. 8 bpp formats are considered 8-bit
palettized modes, while 12, 15, 16, 24, and 32 bits per pixel are considered "packed pixel" modes,
meaning each pixel contains the RGB color components packed in the bits of the pixel.

After you have initialized your video mode, you can take the surface that was returned, and write to
it like any other framebuffer, calling the update routine as you go.

When you have finished your video access and are ready to quit your application, you should call
"SDL_Quit()" to shutdown the video and events.

SDL_GetVideoSurface

Name

SDL_GetVideoSurface — returns a pointer to the current display surface
Synopsis

#include "SDL.h"
SDL_Surface * SDL_GetVideoSurface (void);

47

SDL_GetVideoSurface

Description

This function returns a pointer to the current display surface. If SDL is doing format conversion on
the display surface, this function returns the publicly visible surface, not the real video surface.

See Also
SDL_Surface

48

SDL_GetVideolnfo

Name

SDL_GetVideolnfo — returns a pointer to information about the video hardware

Synopsis

#include "SDL.h"
SDL_Videolnfo * SDL_GetVideolnfo (void);

Description

This function returns a read-only pointeritdormationabout the video hardware. If this is called
beforeSDL_SetVideoModgthevfmt member of the returned structure will contain the pixel
format of the "best" video mode.

See Also

SDL_SetVideoMode , SDL_Videolnfo

49

SDL_VideoDriverName

Name

SDL_VideoDriverName — Obtain the name of the video driver
Synopsis
#include "SDL.h"

char * SDL_VideoDriverName (char *namebuf, int maxlen);

Description

The buffer pointed to bpamebuf is filled up to a maximum ofaxlen characters (include the
NULL terminator) with the name of the initialised video driver. The driver name is a simple one
word identifier like "x11" or "windib".

Return Value

ReturnsNULL if video has not been initialised withDL_Init or a pointer tmamebuf otherwise.

See Also

SDL_Init SDL_InitSubSystem

50

SDL_ListModes

Name

SDL_ListModes — Returns a pointer to an array of available screen dimensions for the given
format and video flags

Synopsis

#include "SDL.h"
SDL_Rect ** SDL_ListModes (SDL_PixelFormat *format, Uint32 flags);

Description

Return a pointer to an array of available screen dimensions for the given format and video flags,
sorted largest to smallest. RetuniSLL if there are no dimensions available for a particular format,
or -1 if any dimension is okay for the given format.

If format is NULL, the mode list will be for the format returned BpPL_GetVideolnfo@>vimt .
Theflag parameter is an OR’d combination sifrfaceflags. The flags are the same as those used
SDL_SetVideoMode and they play a strong role in deciding what modes are valid. For instance, if
you passSDL_HWSURFACHES a flag only modes that support hardware video surfaces will be
returned.

Example

SDL_Rect **modes;
int i;

/* Get available fullscreen/hardware modes */
modes=SDL_ListModes(NULL, SDL_FULLSCREEN|SDL_HWSURFACE);

/* Check is there are any modes available */

if(lmodes == (SDL_Rect **)0){
printf("No modes available'\n");
exit(-1);

}

51

/* Check if or resolution is restricted */
iflmodes == (SDL_Rect **)-1){
printf("All resolutions available.\n");
}
elsef
/* Print valid modes */
printf("Available Modes\n");
for(i=0;modes][i];++i)
printf(" %d x %d\n", modes[i]->w, modes]i]->h);

See Also

SDL_SetVideoMode , SDL_GetVideolnfo , SDL_Rect SDL_PixelFormat

SDL_ListModes

52

SDL_VideoModeOK

Name

SDL_VideoModeOK — Check to see if a particular video mode is supported.
Synopsis

#include "SDL.h"
int SDL_VideoModeOK(int width, int height, int bpp, Uint32 flags);

Description

SDL_VideoModeOK returns 0 if the requested mode is not supported under any bit depth, or returns
the bits-per-pixel of the closest available mode with the given width, height and reqseastaeck
flags (seeDL_SetVideoMode).

The bits-per-pixel value returned is only a suggested mode. You can usually request and bpp you
want whersettingthe video mode and SDL will emulate that color depth with a shadow video
surface.

The arguments t8DL_VideoModeOK are the same ones you would pasSl_SetVideoMode

Example

SDL_Surface *screen;
Uint32 bpp;

printf("Checking mode 640x480@16bpp.\n");
bpp=SDL_VideoModeOK(640, 480, 16, SDL_HWSURFACE);

if(tbpp){
printf("Mode not available.\n");
exit(-1);

}

printf("SDL Recommends 640x480@%dbpp.\n", bpp);
screen=SDL_SetVideoMode(640, 480, bpp, SDL_HWSURFACE);

53

SDL_VideoModeOK

See Also

SDL_SetVideoMode , SDL_GetVideolnfo

54

SDL_SetVideoMode

Name

SDL_SetVideoMode — Set up a video mode with the specified width, height and bits-per-pixel.
Synopsis

#include "SDL.h"
SDL_Surface * SDL_SetVideoMode (int width, int height, int bpp, Uint32
flags);

Description

Set up a video mode with the specified width, height and bits-per-pixel.
If bpp is O, it is treated as the current display bits per pixel.

Theflags parameter is the same as fltags field of theSDL_Surfacestructure. OR'd
combinations of the following values are valid.

SDL_SWSURFACE Create the video surface in system memory
SDL_HWSURFACE Create the video surface in video memory
SDL_ASYNCBLIT Enables the use of asynchronous to the display

surface. This will usually slow down blitting on
single CPU machines, but may provide a spe€
increase on SMP systems.

SDL_ANYFORMAT Normally, if a video surface of the requested
depth ppp) is not available, SDL will emulate
one with a shadow surface. Passing
SDL_ANYFORMApPrevents this and causes SDL to
use the video surface, regardless of its depth.
SDL_HWPALETTE Give SDL exclusive palette access. Without th
flag you may not always get the the colors you
request withSDL_SetColors

o

n

55

SDL_SetVideoMode

SDL_DOUBLEBUF

Enable double buffering; only valid with
SDL_HWSURFACE. CallingsDL_Flip will flip
the buffers and update the screen. If double
buffering could not be enabled th&DL_Flip
will just perform aSDL_UpdateRect on the
entire screen.

SDL_FULLSCREEN

SDL will attempt to use a fullscreen mode

SDL_OPENGL

Create an OpenGL rendering context. You shd
have previously set OpenGL video attributes w
SDL_GL_SetAttribute

uld
ith

SDL_OPENGLBLIT

Create an OpenGL rendering context, like abg
but allow normal blitting operations.

SDL_RESIZABLE

Create a resizable window. When the window
resized by the user@DL_VIDEORESIZEevent is
generated an8DL_SetVideoMode can be calle
again with the new size.

)

SDL_NOFRAME

If possible,SDL_NOFRAMEauses SDL to create
window with no title bar or frame decoration.
Fullscreen modes automatically have this flag

set.

Note: Whatever flags
returned surface.

Return Value

The framebuffer surface, or NULL if it fails.

See Also

SDL_LockSurface

SDL_SetVideoMode could satisfy are set in the flags member of the

, SDL_SetColors , SDL_Flip , SDL_Surface

56

SDL_UpdateRect

Name

SDL_UpdateRect — Makes sure the given area is updated on the given screen.

Synopsis

#include "SDL.h"
void SDL_UpdateRect (SDL_Surface *screen, Sint32 x, Sint32 y, Sint32 w,
Sint32 h);

Description

Makes sure the given area is updated on the given screen.
If’x’,’y’,’w and ’h’ are all 0,SDL_UpdateRect will update the entire screen.

This function should not be called whilecreen ' is locked

See Also

SDL_UpdateRects , SDL_Rect SDL_SurfaceSDL_LockSurface

57

SDL_UpdateRects

Name

SDL_UpdateRects — Makes sure the given list of rectangles is updated on the given screen.
Synopsis

#include "SDL.h"
void SDL_UpdateRects (SDL_Surface *screen, int numrects, SDL_Rect *rects);

Description

Makes sure the given list of rectangles is updated on the given screen.
This function should not be called whigereen is locked

Note: It is adviced to call this function only once per frame, since each call has some processing
overhead. This is no restriction since you can pass any number of rectangles each time.

The rectangles are not automatically merged or checked for overlap. In general, the programmer
can use his knowledge about his particular rectangles to merge them in an efficient way, to avoid
overdraw.

See Also

SDL_UpdateRect , SDL_Rect SDL_SurfaceSDL_LockSurface

58

SDL_Flip

Name
SDL_Flip — Swaps screen buffers

Synopsis

#include "SDL.h"
int SDL_Flip (SDL_Surface *screen);

Description

On hardware that supports double-buffering, this function sets up a flip and returns. The hardware
will wait for vertical retrace, and then swap video buffers before the next video surface blit or lock
will return. On hardware that doesn’t support double-buffering, this is equivalent to calling
SDL_UpdateRe¢screen, 0, 0, 0, 0)

The SDL_DOUBLEBUHag must have been passed3DL_SetVideoModewhen setting the video
mode for this function to perform hardware flipping.

Return Value

This function returns 0 if successful, or -1 if there was an error.

See Also

SDL_SetVideoMode , SDL_UpdateRect , SDL_Surface

59

SDL_SetColors

Name

SDL_SetColors — Sets a portion of the colormap for the given 8-bit surface.
Synopsis

#include "SDL.h"
int SDL_SetColors (SDL_Surface *surface, SDL_Color *colors, int firstcolor,
int ncolors);

Description

Sets a portion of the colormap for the given 8-bit surface.

Whensurface is the surface associated with the current display, the display colormap will be
updated with the requested colorsSiL_HWPALETTRvas set irSDL_SetVideoModdlags,
SDL_SetColors will always return 1, and the palette is guaranteed to be set the way you desire,
even if the window colormap has to be warped or run under emulation.

The color components of 8DL_ Colorstructure are 8-bits in size, giving you a total of 256
=16777216 colors.

Palettized (8-bit) screen surfaces with 8@._HWPALETTH#ag have two palettes, a logical palette
that is used for mapping blits to/from the surface and a physical palette (that determines how the
hardware will map the colors to the displagpL_SetColors maodifies both palettes (if present),
and is equivalent to callin§DL_SetPalettavith theflags set to(SDL_LOGPAL |

SDL_PHYSPAL)

Return Value

If surface is not a palettized surface, this function does nothing, returning 0. If all of the colors
were set as passed$®L_SetColors , it will return 1. If not all the color entries were set exactly as
given, it will return 0, and you should look at the surface palette to determine the actual color palette.

Example

/* Create a display surface with a grayscale palette */

60

SDL_Surface *screen;
SDL_Color colors[256];
int i

/* Fill colors with color information */
for(i=0;i<256;i++){

colorsi].r=i;

colors[i].g=i;

colorsli].b=i;

}

/* Create display */
screen=SDL_SetVideoMode(640, 480, 8, SDL_HWPALETTE);
if(Iscreen){
printf("Couldn’t set video mode: %s\n", SDL_GetError());
exit(-1);
}

/* Set palette */
SDL_SetColors(screen, colors, 0, 256);

See Also

SDL_ColorSDL_SurfaceSDL_SetPalette , SDL_SetVideoMode

SDL_SetColors

61

SDL_SetPalette

Name

SDL_SetPalette = — Sets the colors in the palette of an 8-bit surface.
Synopsis

#include "SDL.h"
int SDL_SetPalette (SDL_Surface *surface, int flags, SDL_Color *colors, int
firstcolor, int ncolors);

Description

Sets a portion of the palette for the given 8-bit surface.

Palettized (8-bit) screen surfaces with 8@L._HWPALETTHag have two palettes, a logical palette

that is used for mapping blits to/from the surface and a physical palette (that determines how the
hardware will map the colors to the displaDL_BlitSurfacealways uses the logical palette when
blitting surfaces (if it has to convert between surface pixel formats). Because of this, it is often useful
to modify only one or the other palette to achieve various special color effects (e.g., screen fading,
color flashes, screen dimming).

This function can modify either the logical or physical palette by spec8ibg LOGPALor
SDL_PHYSPAthe in theflags parameter.

Whensurface is the surface associated with the current display, the display colormap will be
updated with the requested colorsSIbL_HWPALETTRas set inrSDL_SetVideoModdlags,
SDL_SetPalette will always return 1, and the palette is guaranteed to be set the way you desire,
even if the window colormap has to be warped or run under emulation.

The color components of @8DL_ Colorstructure are 8-bits in size, giving you a total of
256'=16777216 colors.

Return Value

If surface is not a palettized surface, this function does nothing, returning 0. If all of the colors
were set as passed$OL_SetPalette , it will return 1. If not all the color entries were set exactly
as given, it will return 0, and you should look at the surface palette to determine the actual color
palette.

62

SDL_SetPalette

Example

[* Create a display surface with a grayscale palette */
SDL_Surface *screen;

SDL_Color colors[256];

int i;

/* Fill colors with color information */
for(i=0;i<256;i++){

colorsJil.r=i;

colorsJi].g=i;

colorsJi].b=i;

}

[* Create display */
screen=SDL_SetVideoMode(640, 480, 8, SDL_HWPALETTE);
if(screen){
printf("Couldn’t set video mode: %s\n", SDL_GetError());
exit(-1);
}

[* Set palette */
SDL_SetPalette(screen, SDL_LOGPAL|SDL_PHYSPAL, colors, 0, 256);

See Also
SDL_SetColorsSDL_SetVideoModeSDL_SurfaceSDL_Color

63

SDL_SetGamma

Name

SDL_SetGamma— Sets the color gamma function for the display
Synopsis

#include "SDL.h"
int SDL_SetGammdfloat redgamma, float greengamma, float bluegamma);

Description

Sets the "gamma function" for the display of each color component. Gamma controls the
brightness/contrast of colors displayed on the screen. A gamma valug @ identity (i.e., no
adjustment is made).

This function adjusts the gamma based on the "gamma function" parameter, you can directly specify
lookup tables for gamma adjustment wgbL_SetGammaRamp

Not all display hardware is able to change gamma.

Return Value

Returns -1 on error (or if gamma adjustment is not supported).

See Also
SDL_GetGammaRampDL_SetGammaRamp

64

SDL_GetGammaRamp

Name

SDL_GetGammaRamp— Gets the color gamma lookup tables for the display
Synopsis

#include "SDL.h"
int SDL_GetGammaRam(Jintl6 *redtable, Uintl6 *greentable, Uint16
*bluetable);

Description

Gets the gamma translation lookup tables currently used by the display. Each table is an array of 256
Uint16 values.

Not all display hardware is able to change gamma.

Return Value

Returns -1 on error.

See Also
SDL_SetGamm&DL_SetGammaRamp

65

SDL_SetGammaRamp

Name

SDL_SetGammaRamp— Sets the color gamma lookup tables for the display
Synopsis

#include "SDL.h"
int SDL_SetGammaRam(Jintl6 *redtable, Uintl6 *greentable, Uint16
*bluetable);

Description

Sets the gamma lookup tables for the display for each color component. Each table is an array of 256
Uint16 values, representing a mapping between the input and output for that channel. The input is
the index into the array, and the output is the 16-bit gamma value at that index, scaled to the output
color precision. You may pass NULL to any of the channels to leave them unchanged.

This function adjusts the gamma based on lookup tables, you can also have the gamma calculated
based on a "gamma function" parameter vVBBL_SetGamma

Not all display hardware is able to change gamma.

Return Value

Returns -1 on error (or if gamma adjustment is not supported).

See Also
SDL_SetGamm&DL_GetGammaRamp

66

SDL_MapRGB

Name
SDL_MapRGB— Map a RGB color value to a pixel format.

Synopsis

#include "SDL.h"
Uint32 SDL_MapRGESDL_PixelFormat *fmt, Uint8 r, Uint8 g, Uint8 b);

Description

Maps the RGB color value to the specified pixel format and returns the pixel value as a 32-bit int.

If the format has a palette (8-bit) the index of the closest matching color in the palette will be
returned.

If the specified pixel format has an alpha component it will be returned as all 1 bits (fully opaque).

Return Value

A pixel value best approximating the given RGB color value for a given pixel format. If the pixel
format bpp (color depth) is less than 32-bpp then the unused upper bits of the return value can safely
be ignored (e.g., with a 16-bpp format the return value can be assigned to a Uint16, and similarly a
Uint8 for an 8-bpp format).

See Also

SDL_GetRGB SDL_GetRGBA SDL_MapRGBASDL _PixelFormat

67

SDL_MapRGBA

Name
SDL_MapRGBA— Map a RGBA color value to a pixel format.

Synopsis

#include "SDL.h"
Uint32 SDL_MapRGB#SDL_PixelFormat *fmt, Uint8 r, Uint8 g, Uint8 b, Uint8
a);

Description

Maps the RGBA color value to the specified pixel format and returns the pixel value as a 32-bit int.

If the format has a palette (8-bit) the index of the closest matching color in the palette will be
returned.

If the specified pixel format has no alpha component the alpha value will be ignored (as it will be in
formats with a palette).

Return Value

A pixel value best approximating the given RGBA color value for a given pixel format. If the pixel
format bpp (color depth) is less than 32-bpp then the unused upper bits of the return value can safely
be ignored (e.g., with a 16-bpp format the return value can be assigned to a Uint16, and similarly a
Uint8 for an 8-bpp format).

See Also
SDL_GetRGBSDL_GetRGBA SDL_MapRGB SDL_PixelFormat

68

SDL_GetRGB

Name
SDL_GetRGB— Get RGB values from a pixel in the specified pixel format.

Synopsis

#include "SDL.h"
void SDL_GetRGHRUInt32 pixel, SDL_PixelFormat *fmt, Uint8 *r, Uint8 *g,
uint8 *b);

Description

Get RGB component values from a pixel stored in the specified pixel format.

This function uses the entire 8-bit [0..255] range when converting color components from pixel
formats with less than 8-bits per RGB component (e.g., a completely white pixel in 16-bit RGB565
format would return [Oxff, Oxff, Oxff] not [0xf8, Oxfc, Oxf8]).

See Also

SDL_GetRGBA SDL_MapRGBSDL_MapRGBASDL_PixelFormat

69

SDL_GetRGBA

Name
SDL_GetRGBA— Get RGBA values from a pixel in the specified pixel format.

Synopsis

#include "SDL.h"
void SDL_GetRGBAUINt32 pixel, SDL_PixelFormat *fmt, Uint8 *r, Uint8 *g,
uUint8 *b, Uint8 *a);

Description

Get RGBA component values from a pixel stored in the specified pixel format.

This function uses the entire 8-bit [0..255] range when converting color components from pixel
formats with less than 8-bits per RGB component (e.g., a completely white pixel in 16-bit RGB565
format would return [Oxff, Oxff, Oxff] not [0xf8, Oxfc, Oxf8]).

If the surface has no alpha component, the alpha will be returned as 0xff (100% opaque).

See Also
SDL_GetRGBSDL_MapRGB SDL_MapRGBA SDL_PixelFormat

70

SDL_CreateRGBSurface

Name
SDL_CreateRGBSurface — Create an empty SDL_Surface

Synopsis

#include "SDL.h"
SDL_Surface * SDL_CreateRGBSurface (Uint32 flags, int width, int height, int
depth, Uint32 Rmask, Uint32 Gmask, Uint32 Bmask, Uint32 Amask);

Description

Allocate an empty surface (must be called ag@&l_SetVideoModg

If depth is 8 bits an empty palette is allocated for the surface, otherwise a ’packed-pixel’
SDL_PixelFormats created using thlRGBA]mask ’s provided (se&sDL_PixelFormat The
flags specifies the type of surface that should be created, it is an OR’d combination of the
following possible values.

SDL_SWSURFACE SDL will create the surface in system memory.
This improves the performance of pixel level
access, however you may not be able to take
advantage of some types of hardware blitting.

SDL_HWSURFACE SDL will attempt to create the surface in video
memory. This will allow SDL to take advantage of
Video->Video blits (which are often accelerated).

SDL_SRCCOLORKEY \With this flag SDL will attempt to find the best
location for this surface, either in system mempry
or video memory, to obtain hardware colorkey
blitting support.

SDL_SRCALPHA \With this flag SDL will attempt to find the best
location for this surface, either in system mempry
or video memory, to obtain hardware alpha
support

71

SDL_CreateRGBSurface

See Also

SDL_CreateRGBSurfaceFrom , SDL_FreeSurface , SDL_SetVideoMode , SDL_LockSurface ,
SDL_PixelFormatSDL_Surface

72

SDL_CreateRGBSurfaceFrom

Name

SDL_CreateRGBSurfaceFrom — Create an SDL_Surface from pixel data
Synopsis

#include "SDL.h"

SDL_Surface * SDL_CreateRGBSurfaceFrom (void *pixels, int width, int height,
int depth, int pitch, Uint32 Rmask, Uint32 Gmask, Uint32 Bmask, Uint32
Amask);

Description

Creates an SDL_Surface from the provided pixel data.

The data stored ipixels is assumed to be of trdepth specified in the parameter list. The pixel
data is not copied into the SDL_Surface structure so it should no be freed until the surface has been
freed with a called t&DL_FreeSurfaceitch is the length of each scanline in bytes.

SeeSDL_CreateRGBSurface for a more detailed description of the other parameters.

See Also

SDL_CreateRGBSurface , SDL_FreeSurface

73

SDL_FreeSurface

Name

SDL_FreeSurface — Frees (deletes) a SDL_Surface
Synopsis

#include "SDL.h"
void SDL_FreeSurface (SDL_Surface *surface);

Description

Frees the resources used by a previously created SDL_Surface. If the surface was created using
SDL_CreateRGBSurfaceFrotien the pixel data is not freed.

See Also

SDL_CreateRGBSurface SDL_CreateRGBSurfaceFrom

74

SDL_LockSurface

Name

SDL_LockSurface — Lock a surface for directly access.
Synopsis

#include "SDL.h"
int SDL_LockSurface (SDL_Surface *surface);

Description

SDL_LockSurface sets up a surface for directly accessing the pixels. Between calls to
SDL_LockSurface andSDL_UnlockSurface , you can write to and read from

surface->pixels , using the pixel format stored Burface->format . Once you are done
accessing the surface, you should 88¢_UnlockSurface to release it.

Not all surfaces require locking. $DL_MUSTLOGCsurface) evaluates to 0, then you can read and
write to the surface at any time, and the pixel format of the surface will not change.

No operating system or library calls should be made between lock/unlock pairs, as critical system
locks may be held during this time.

It should be noted, that since SDL 1.1.8 surface locks are recursive. This means that you can lock a
surface multiple times, but each lock must have a match unlock.

SDL_LockSurface(surface);

[* Surface is locked */
[* Direct pixel access on surface here */

SDL_LockSurface(surface);

/* More direct pixel access on surface */
SDL_UnlockSurface(surface);

/* Surface is still locked */

/* Note: Is versions < 1.1.8, the surface would have been */
/* no longer locked at this stage */

75

SDL_LockSurface

SDL_UnlockSurface(surface);
/* Surface is now unlocked */

Return Value

SDL_LockSurface returns 0, or -1 if the surface couldn’t be locked.

See Also

SDL_UnlockSurface

76

SDL_UnlockSurface

Name

SDL_UnlockSurface — Unlocks a previously locked surface.
Synopsis

#include "SDL.h"
void SDL_UnlockSurface (SDL_Surface *surface);

Description

Surfaces that were previously locked usB@L_LockSurface must be unlocked with
SDL_UnlockSurface . Surfaces should be unlocked as soon as possible.

It should be noted that since 1.1.8, surface locks are recursivesBeéockSurface

See Also

SDL_LockSurface

77

SDL_LoadBMP

Name
SDL_LoadBMP— Load a Windows BMP file into an SDL_ Surface.

Synopsis

#include "SDL.h"
SDL_Surface * SDL_LoadBMRconst char *file);

Description

Loads a surface from a named Windows BMP file.

Return Value

Returns the new surface, BULLif there was an error.

See Also

SDL_SaveBMP

78

SDL_SaveBMP

Name

SDL_SaveBMP— Save an SDL_Surface as a Windows BMP file.

Synopsis
#include "SDL.h"

int SDL_SaveBMRSDL_Surface *surface, const char *file);

Description

Saves the SDL_Surfasirface as a Windows BMP file naméfde

Return Value

Returns 0 if successful or -1 if there was an error.

See Also

SDL_LoadBMP

79

SDL_SetColorKey

Name

SDL_SetColorkey — Sets the color key (transparent pixel) in a blittable surface and RLE
acceleration.

Synopsis

#include "SDL.h"
int SDL_SetColorKey (SDL_Surface *surface, Uint32 flag, Uint32 key);

Description

Sets the color key (transparent pixel) in a blittable surface and enables or disables RLE blit
acceleration.

RLE acceleration can substantially speed up blitting of images with large horizontal runs of
transparent pixels (i.e., pixels that match Kegy value). Thekey must be of the same pixel format
as thesurface , SDL_MapRGBs often useful for obtaining an acceptable value.

If flag is SDL_SRCCOLORKRYenkey is the transparent pixel value in the source image of a blit.

If flag is OR'd withSDL_RLEACCEILthen the surface will be draw using RLE acceleration when
drawn withSDL_BlitSurface The surface will actually be encoded for RLE acceleration the first
time SDL_BlitSurfaceor SDL_DisplayFormais called on the surface.

If flag is O, this function clears any current color key.

Return Value

This function returns 0, or -1 if there was an error.

See Also

SDL_BlitSurface , SDL_DisplayFormat , SDL_MapRGBSDL_SetAlpha

80

SDL_SetAlpha

Name

SDL_SetAlpha — Adjust the alpha properties of a surface
Synopsis

#include "SDL.h"
int SDL_SetAlpha (SDL_Surface *surface, Uint32 flag, Uint8 alpha);

Description

Note: This function and the semantics of SDL alpha blending have changed since version 1.1.4.
Up until version 1.1.5, an alpha value of 0 was considered opaque and a value of 255 was
considered transparent. This has now been inverted: 0 (SDL_ALPHA_TRANSPARENTs now
considered transparent and 255 (SDL_ALPHA_OPAQUEHS now considered opaque.

SDL_SetAlpha is used for setting the per-surface alpha value and/or enabling and disabling alpha
blending.

Thesurface parameter specifies which surface whose alpha attributes you wish to dejyst.

is used to specify whether alpha blending should be used (SRCALPHpand whether the surface
should use RLE acceleration for blittin§@L_RLEACCE). flags can be an OR’d combination of
these two options, one of these options or GDL_SRCALPHAs not passed as a flag then all alpha
information is ignored when blitting the surface. Tdlpha parameter is the per-surface alpha
value; a surface need not have an alpha channel to use per-surface alpha and blitting can still be
accelerated witlsDL_RLEACCEL

Note: The per-surface alpha value of 128 is considered a special case and is optimised, so it's
much faster than other per-surface values.

Alpha effects surface blitting in the following ways:

RGBA->RGB withSDL_SRCALPHA The source is alpha-blended with the destination,
using the alpha channe&dDL_SRCCOLORKExNd
the per-surface alpha are ignored.

81

RGBA->RGB withoutSDL_SRCALPHA

RGB->RGBA withSDL_SRCALPHA

RGB->RGBA withoutSDL_SRCALPHA

RGBA->RGBA withSDL_SRCALPHA

RGBA->RGBA withoutSDL_SRCALPHA

RGB->RGB withSDL_SRCALPHA

RGB->RGB withoutSDL_SRCALPHA

SDL_SetAlpha

The RGB data is copied from the source. The
source alpha channel and the per-surface alpha
value are ignored.

The source is alpha-blended with the destination
using the per-surface alpha value. If
SDL_SRCCOLORKES set, only the pixels not
matching the colorkey value are copied. The alpha
channel of the copied pixels is set to opaque.

The RGB data is copied from the source and the
alpha value of the copied pixels is set to opaque. If
SDL_SRCCOLORKES set, only the pixels not
matching the colorkey value are copied.

The source is alpha-blended with the destination
using the source alpha channel. The alpha channel
in the destination surface is left untouched.
SDL_SRCCOLORKES ignored.

The RGBA data is copied to the destination
surface. IfSDL_SRCCOLORKHS set, only the

pixels not matching the colorkey value are copied.

The source is alpha-blended with the destination
using the per-surface alpha value. If
SDL_SRCCOLORKEHES set, only the pixels not
matching the colorkey value are copied.

The RGB data is copied from the source. If
SDL_SRCCOLORKEHES set, only the pixels not
matching the colorkey value are copied.

Note: Note that RGBA->RGBA blits (with SDL_SRCALPHA set) keep the alpha of the
destination surface. This means that you cannot compose two arbitrary RGBA surfaces this way
and get the result you would expect from "overlaying" them; the destination alpha will work as a

mask.

Also note that per-pixel and per-surface alpha cannot be combined; the per-pixel alpha is always

used if available

Return Value

This function returns 0, or -1 if there was an error.

82

SDL_SetAlpha

See Also

SDL_MapRGBASDL_GetRGBA SDL_DisplayFormatAlpha , SDL_BIlitSurface

83

SDL_SetClipRect

Name

SDL_SetClipRect — Sets the clipping rectangle for a surface.
Synopsis

#include "SDL.h"
void SDL_SetClipRect (SDL_Surface *surface, SDL_Rect *rect);

Description

Sets the clipping rectangle for a surface. When this surface is the destination of a blit, only the area
within the clip rectangle will be drawn into.

The rectangle pointed to bygct will be clipped to the edges of the surface so that the clip
rectangle for a surface can never fall outside the edges of the surface.

If rect isNULLthe clipping rectangle will be set to the full size of the surface.

See Also

SDL_GetClipRect , SDL_BlitSurface , SDL_Surface

84

SDL_GetClipRect

Name

SDL_GetClipRect — Gets the clipping rectangle for a surface.
Synopsis
#include "SDL.h"

void SDL_GetClipRect (SDL_Surface *surface, SDL_Rect *rect);

Description

Gets the clipping rectangle for a surface. When this surface is the destination of a blit, only the area
within the clip rectangle is drawn into.

The rectangle pointed to bygct will be filled with the clipping rectangle of the surface.

See Also

SDL_SetClipRect , SDL_BlitSurface , SDL_Surface

85

SDL_ConvertSurface

Name

SDL_ConvertSurface — Converts a surface to the same format as another surface.
Synopsis

#include "SDL.h"
SDL_Surface * SDL_ConvertSurface (SDL_Surface *src, SDL_PixelFormat *fmt,
uint32 flags);

Description

Creates a new surface of the specified format, and then copies and maps the given surface to it. If this
function fails, it returnaNULL

Theflags parameter is passed 8DL_CreateRGBSurface and has those semantics.

This function is used internally b$DL_DisplayFormat

Return Value

Returns either a pointer to the new surfaceNoLLon error.

See Also

SDL_CreateRGBSurface , SDL_DisplayFormat , SDL_PixelFormatSDL_Surface

86

SDL_BlitSurface

Name

SDL_BlitSurface — This performs a fast blit from the source surface to the destination surface.

Synopsis

#include "SDL.h"
int SDL_BIitSurface (SDL_Surface *src, SDL_Rect *srcrect, SDL_Surface *dst,
SDL_Rect *dstrect);

Description

This performs a fast blit from the source surface to the destination surface.
Only the position is used in thastrect (the width and height are ignored).
If eithersrcrect ordstrect areNULL, the entire surfacesc ordst) is copied.

The final blit rectangle is saved @fstrect after all clipping is performedsfcrect is not
modified).

The blit function should not be called on a locked surface.

The results of blitting operations vary greatly depending on wheiber SRCAPLHAS set or not.
SeeSDL_SetAlph&or an explaination of how this effects your results. Colorkeying and alpha
attributes also interact with surface blitting, as the following pseudo-code should hopefully explain.

if (source surface has SDL_SRCALPHA set) {
if (source surface has alpha channel (that is, format->Amask != 0))
blit using per-pixel alpha, ignoring any colour key
else {
if (source surface has SDL_SRCCOLORKEY set)
blit using the colour key AND the per-surface alpha value
else
blit using the per-surface alpha value
}
} else {
if (source surface has SDL_SRCCOLORKEY set)
blit using the colour key
else
ordinary opaque rectangular blit

87

SDL_BlitSurface

Return Value

If the blit is successful, it returns 0, otherwise it returns -1.

If either of the surfaces were in video memory, and the blit returns -2, the video memory was lost, so
it should be reloaded with artwork and re-blitted:

while (SDL_BIitSurface(image, imgrect, screen, dstrect) == -2) {
while (SDL_LockSurface(image)) < 0)
Sleep(10);

-- Write image pixels to image->pixels --
SDL_UnlockSurface(image);
}

This happens under DirectX 5.0 when the system switches away from your fullscreen application.
Locking the surface will also fail until you have access to the video memory again.

See Also

SDL_LockSurface , SDL_FillRect , SDL_SurfaceSDL_Rect

88

SDL_FillRect

Name

SDL_FillRect — This function performs a fast fill of the given rectangle with some color
Synopsis

#include "SDL.h"
int SDL_FillRect (SDL_Surface *dst, SDL_Rect *dstrect, Uint32 color);

Description

This function performs a fast fill of the given rectangle wéthlor . If dstrect is NULL, the
whole surface will be filled witkcolor

The color should be a pixel of the format used by the surface, and can be generated by the
SDL_MapRGBfunction.

If there is a clip rectangle set on the destination (seBSbd._SetClipReqtthen this function will
clip based on the intersection of the clip rectangle andiieect rectangle.

Return Value

This function returns O on success, or -1 on error.

See Also

SDL_MapRGBSDL_BlitSurface , SDL_Rect

89

SDL_DisplayFormat

Name

SDL_DisplayFormat — Convert a surface to the display format
Synopsis

#include "SDL.h"
SDL_Surface * SDL_DisplayFormat (SDL_Surface *surface);

Description

This function takes a surface and copies it to a new surface of the pixel format and colors of the
video framebuffer, suitable for fast blitting onto the display surface. It &t ConvertSurface

If you want to take advantage of hardware colorkey or alpha blit acceleration, you should set the
colorkey and alpha value before calling this function.

If you want an alpha channel, s&®L_DisplayFormatAlpha

Return Value

If the conversion fails or runs out of memory, it returns NULL

See Also

SDL_ConvertSurface , SDL_DisplayFormatAlpha SDL_SetAlpha , SDL_SetColorKey
SDL_Surface

90

SDL_DisplayFormatAlpha

Name

SDL_DisplayFormatAlpha — Convert a surface to the display format
Synopsis

#include "SDL.h"
SDL_Surface * SDL_DisplayFormatAlpha (SDL_Surface *surface);

Description

This function takes a surface and copies it to a new surface of the pixel format and colors of the
video framebuffer plus an alpha channel, suitable for fast blitting onto the display surface. It calls
SDL_ConvertSurface

If you want to take advantage of hardware colorkey or alpha blit acceleration, you should set the
colorkey and alpha value before calling this function.

This function can be used to convert a colourkey to an alpha channel 3ttheSRCCOLORKHlag
is set on the surface. The generated surface will then be transparent (alpha=0) where the pixels match
the colourkey, and opaque (alpha=255) elsewhere.

Return Value

If the conversion fails or runs out of memory, it returns NULL

See Also
SDL_ConvertSurfaceSDL_SetAlphaSDL_SetColorKeySDL_DisplayFormatSDL_Surface

91

SDL_WarpMouse

Name

SDL_WarpMouse — Set the position of the mouse cursor.
Synopsis
#include "SDL.h"

void SDL_WarpMouse(Uintl6 x, Uintl6 y);

Description

Set the position of the mouse cursor (generates a mouse motion event).

See Also

SDL_MouseMotionEvent

92

SDL_CreateCursor

Name

SDL_CreateCursor — Creates a new mouse Cursor.
Synopsis

#include "SDL.h"
SDL_Cursor * SDL_CreateCursor (Uint8 *data, Uint8 *mask, int w, int h, int
hot_x, int hot_y);

Description

Create a cursor using the specifidata andmask (in MSB format). The cursor width must be a
multiple of 8 bits.

The cursor is created in black and white according to the following:

Data / Mask Resulting pixel on screen

0/1 White

1/1 Black

0/0 Transparent

1/0 Inverted color if possible, black if not.

Cursors created with this function must be freed V8L_FreeCursor

Example

/* Stolen from the mailing list */
/* Creates a new mouse cursor from an XPM */

* XPM */

static const char *arrow[] = {
/* width height num_colors chars_per_pixel */
" 32 32 3 1"
/* colors */

93

SDL_CreateCursor

"X ¢ #000000",
", c #fffff",
" ¢ None",
/* pixels */

e "
"XX "
"X X "
"X..X "
"X.. X "
"X X
"X X "
"X X "

), SR X "

), S X "
"X XXXXX "
XXX "
XX XX "
XX X.X "
"X X.X "
" X.X "

" X.X "

" X.X "

" XX "
"0,0"

h

static SDL_Cursor *init_system_cursor(const char *imagel])

{
int i, row, col;
Uint8 data[4*32];
Uint8 mask[4*32];
int hot_x, hot_y;

i = -1;

for (row=0; row<32; ++row) {
for (col=0; col<32; ++col) {

94

SDL_CreateCursor

if (col % 8) {
datafi] <<= 1;
mask[i] <<= 1,
} else {
++i;
datafi] = mask[i] = 0;
}
switch (image[4+row][col]) {
case X
datafi] |= 0x01,;
K[i] |= OxO01;
break;
case '’
mask[i] |= 0x01;
break;
case ' :
break;
}
}

}
sscanf(image[4+row], "%d,%d", &hot_x, &hot_y);
return SDL_CreateCursor(data, mask, 32, 32, hot_x, hot_y);

}

See Also

SDL_FreeCursor , SDL_SetCursor , SDL_ShowCursor

95

SDL_FreeCursor

Name

SDL_FreeCursor — Frees a cursor created with SDL_CreateCursor.

Synopsis
#include "SDL.h"

void SDL_FreeCursor (SDL_Cursor *cursor);

Description

Frees a SDL_Cursor that was created uSiy. CreateCursor

See Also

SDL_CreateCursor

96

SDL_SetCursor

Name

SDL_SetCursor — Set the currently active mouse cursor.
Synopsis

#include "SDL.h"
void * SDL_SetCursor (SDL_Cursor *cursor);

Description

Sets the currently active cursor to the specified one. If the cursor is currently visible, the change will
be immediately represented on the display.

See Also

SDL_GetCursor , SDL_CreateCursor , SDL_ShowCursor

97

SDL_GetCursor

Name

SDL_GetCursor — Get the currently active mouse cursor.

Synopsis
#include "SDL.h"

SDL_Cursor * SDL_GetCursor (void);

Description

Returns the currently active mouse cursor.

See Also

SDL_SetCursor , SDL_CreateCursor , SDL_ShowCursor

98

SDL_ShowCursor

Name

SDL_ShowCursor — Toggle whether or not the cursor is shown on the screen.
Synopsis

#include "SDL.h"
int SDL_ShowCursor (int toggle);

Description

Toggle whether or not the cursor is shown on the screen. PadBindENABLEdisplays the cursor
and passin@DL_DISABLE hides it. The current state of the mouse cursor can be queried by passing
SDL_QUERYeitherSDL_DISABLE or SDL_ENABLEWwiIll be returned.

The cursor starts off displayed, but can be turned off.

Return Value

Returns the current state of the cursor.

See Also

SDL_CreateCursor , SDL_SetCursor

99

SDL_GL_LoadLibrary

Name
SDL_GL_LoadLibrary — Specify an OpenGL library

Synopsis

#include "SDL.h"
int SDL_GL_LoadLibrary (const char *path);

Description

If you wish, you may load the OpenGL library at runtime, this must be done before
SDL_SetVideoMode is called. Thepath of the GL library is passed t8DL_GL_LoadLibrary
and it returns 0 on success, or -1 on an error. You must theBDiseGL_GetProcAddress to
retrieve function pointers to GL functions.

See Also

SDL_GL_GetProcAddress

100

SDL_GL_GetProcAddress

Name
SDL_GL_GetProcAddress — Get the address of a GL function

Synopsis

#include "SDL.h"
void * SDL_GL_GetProcAddress (const char* proc);

Description

Returns the address of the GL functiproc , or NULL if the function is not found. If the GL
library is loaded at runtime, witBDL_GL_LoadLibrary , thenall GL functions must be retrieved
this way. Usually this is used to retrieve function pointers to OpenGL extensions.

Example

typedef void (*GL_ActiveTextureARB_Func)(unsigned int);
GL_ActiveTextureARB_Func glActiveTextureARB_ptr = 0;
int has_multitexture=1;

/* Get function pointer */
glActiveTextureARB_ptr=(GL_ActiveTextureARB_Func) SDL_GL_GetProcAddress("glActiveTextureARB");

/* Check for a valid function ptr */
if(lglActiveTextureARB_ptr){
fprintf(stderr, "Multitexture Extensions not present.\n");
has_multitexture=0;

}

if(has_multitexture){
glActiveTextureARB_ptr(GL_TEXTUREO_ARB);

101

elsef

See Also

SDL_GL_LoadLibrary

SDL_GL_GetProcAddress

102

SDL_GL_GetAttribute

Name
SDL_GL_GetAttribute — Get the value of a special SDL/OpenGL attribute

Synopsis

#include "SDL.h"
int SDL_GL_GetAttribute (SDLGLattr attr, int *value);

Description

Places the value of the SDL/Open@ttributeattr intovalue . This is useful after a call to
SDL_SetVideoMode to check whether your attributes have beetas you expected.

Return Value

Returns 0 on success, or -1 on an error.

See Also

SDL_GL_SetAttribute , GL Attributes

103

SDL_GL_SetAttribute

Name
SDL_GL_SetAttribute — Set a special SDL/OpenGL attribute

Synopsis

#include "SDL.h"
int SDL_GL_SetAttribute (SDL_GLattr attr, int value);

Description

Sets the OpenGhttributeattr tovalue . The attributes you set don't take effect until after a call
to SDL_SetVideoMode . You should us&DL_GL_GetAttribute to check the values after a
SDL_SetVideoMode call.

Return Value

Returns 0 on success, or -1 on error.

Example

SDL_GL_SetAttribute(SDL_GL_RED_SIZE, 5);

SDL_GL_SetAttribute(SDL_GL_GREEN_SIZE, 5);

SDL_GL_SetAttribute(SDL_GL_BLUE_SIZE, 5);

SDL_GL_SetAttribute(SDL_GL_DEPTH_SIZE, 16);

SDL_GL_SetAttribute(SDL_GL_DOUBLEBUFFER, 1);

if ((screen=SDL_SetVideoMode(640, 480, 16, SDL_OPENGL)) == NULL) {
fprintf(stderr, "Couldn’t set GL mode: %s\n", SDL_GetError());
SDL_Quit();
return;

}

Note: The SDL_DOUBLEBUHag is not required to enable double buffering when setting an
OpenGL video mode. Double buffering is enabled or disabled using the
SDL_GL_DOUBLEBUFFER attribute.

104

SDL_GL_SetAttribute

See Also

SDL_GL_GetAttribute , GL Attributes

105

SDL_GL_SwapBuffers

Name
SDL_GL_SwapBuffers — Swap OpenGL framebuffers/Update Display

Synopsis

#include "SDL.h"
void SDL_GL_SwapBuffers (void);

Description
Swap the OpenGL buffers, if double-buffering is supported.

See Also

SDL_SetVideoMode , SDL_GL_SetAttribute

106

SDL_CreateYUVOverlay

Name
SDL_CreateYUVOverlay — Create a YUV video overlay

Synopsis

#include "SDL.h"
SDL_Overlay * SDL_CreateYUVOverlay (int width, int height, Uint32 format,
SDL_Surface *display);

Description

SDL_CreateYUVOverlay creates a YUV overlay of the specifieddth , height andformat
(seeSDL_Overlayfor a list of available formats), for the providelisplay . A SDL_Overlay
structure is returned.

The term 'overlay’ is a misnomer since, unless the overlay is created in hardware, the contents for
the display surface underneath the area where the overlay is shown will be overwritten when the
overlay is displayed.

See Also

SDL_Overlay SDL_DisplayYUVOverlay , SDL_FreeYUVOverlay

107

SDL_LockYUVOverlay

Name
SDL_LockYUVOverlay — Lock an overlay

Synopsis

#include "SDL.h"
int SDL_LockYUVOverlay (SDL_Overlay *overlay);

Description

Much the same aSDL_LockSurface , SDL_LockYUVOverlay locks theoverlay for direct
access to pixel data.

Return Value

Returns 0 on success, or -1 on an error.

See Also

SDL_UnlockYUVOverlay , SDL_CreateYUVOverlay , SDL_Overlay

108

SDL_UnlockYUVOverlay

Name
SDL_UnlockYUVOverlay — Unlock an overlay

Synopsis
#include "SDL.h"

void SDL_UnlockYUVOverlay (SDL_Overlay *overlay);

Description

The opposite t&DL_LockYUVOverlay . Unlocks a previously locked overlay. An overlay must be
unlocked before it can be displayed.

See Also

SDL_UnlockYUVOverlay , SDL_CreateYUVOverlay , SDL_Overlay

109

SDL_DisplayYUVOverlay

Name
SDL_DisplayYUVOverlay = — Blit the overlay to the display

Synopsis
#include "SDL.h"

int SDL_DisplayYUVOverlay (SDL_Overlay *overlay, SDL_Rect *dstrect);

Description

Blit the overlay to the surface specified when it waated TheSDL_ Rectstructuredstrect
specifies the position and size of the destination. Ifdbieect is a larger or smaller than the
overlay then the overlay will be scaled, this is optimized for 2x scaling.

See Also

SDL_Overlay SDL_CreateYUVOverlay

110

SDL_FreeYUVOverlay

Name
SDL_FreeYUVOverlay — Free a YUV video overlay

Synopsis

#include "SDL.h"
void SDL_FreeYUVOverlay (SDL_Overlay *overlay);

Description

Frees anaverlay created bysDL_CreateYUVOverlay

See Also

SDL_Overlay SDL_DisplayYUVOverlay , SDL_FreeYUVOverlay

111

SDL_GLattr

Name

SDL_GLattr — SDL GL Attributes

Attributes

SDL_GL_RED_SIZE
SDL_GL_GREEN_SIZE
SDL_GL_BLUE_SIZE
SDL_GL_ALPHA_SIZE
SDL_GL_DOUBLEBUFFER
SDL_GL_BUFFER_SIZE
SDL_GL_DEPTH_SIZE
SDL_GL_STENCIL_SIZE
SDL_GL_ACCUM_RED_SIZE

SDL_GL_ACCUM_GREEN_SIZE
SDL_GL_ACCUM_BLUE_SIZE

SDL_GL_ACCUM_ALPHA_SIZE

Description

Size of the framebuffer red component, in bits
Size of the framebuffer green component, in bits
Size of the framebuffer blue component, in bits
Size of the framebuffer alpha component, in bits
0 or 1, enable or disable double buffering

Size of the framebuffer, in bits

Size of the depth buffer, in bits

Size of the stencil buffer, in bits

Size of the accumulation buffer red component, in
bits

Size of the accumulation buffer green component,
in bits

Size of the accumulation buffer blue component,
in bits

Size of the accumulation buffer alpha component,
in bits

While you can set most OpenGL attributes normally, the attributes list above must be katova
SDL sets the video mode. These attributes a set and readsDithGL_SetAttribute and

SDL_GL_GetAttribute

See Also

SDL_GL_SetAttribute , SDL_GL_GetAttribute

112

SDL_Rect

Name

SDL_Rect — Defines a rectangular area

Structure Definition

typedef struct{
Sintl6 X, y;
Uintl6 w, h;
} SDL_Rect;

Structure Data

X, Y Position of the upper-left corner of the rectangle
w, h The width and height of the rectangle
Description

A SDL_Rect defines a rectangular area of pixels. It is usegiily BlitSurface to define blitting
regions and by several other video functions.

See Also

SDL_BlitSurface , SDL_UpdateRect

113

SDL_Color

Name

SDL_Color — Format independent color description

Structure Definition

typedef struct{
uint8 r;
uint8 g;
uint8 b;
Uint8 unused;
} SDL_Color;

Structure Data

r Red intensity

g Green intensity
b Blue intensity
unused Unused
Description

SDL_Color describes a color in a format independent way. You can convert a SDL_Color to a pixel
value for a certain pixel format usirgbL_MapRGB

See Also

SDL_PixelFormatSDL_SetColors , SDL_Palette

114

SDL_Palette

Name

SDL_Palette — Color palette for 8-bit pixel formats

Structure Definition

typedef struct{
int ncolors;
SDL_Color *colors;
} SDL_Palette;

Structure Data

ncolors Number of colors used in this palette

colors Pointer toSDL_ Colorstructures that make up the
palette.

Description

Each pixel in an 8-bit surface is an index into twors field of the SDL_Palette structure store in
SDL_PixelFormatA SDL_Palette should never need to be created manually. It is automatically
created when SDL allocates a SDL_PixelFormat for a surface. The colors valu&baf &Surface
palette can be set with tl&bL_SetColors

See Also

SDL_Color, SDL_SurfaceSDL_SetColors SDL_SetPalette

115

SDL_PixelFormat

Name
SDL_PixelFormat

Structure Definition

typedef struct{
SDL_Palette *palette;
Uint8 BitsPerPixel;
Uint8 BytesPerPixel;
Uint32 Rmask, Gmask, Bmask, Amask;
Uint8 Rshift, Gshift, Bshift, Ashift;
Uint8 Rloss, Gloss, Bloss, Aloss;
Uint32 colorkey;
uUint8 alpha;

} SDL_PixelFormat;

Structure Data
palette

BitsPerPixel
BytesPerPixel
[RGBA]mask
[RGBA]loss
[RGBA]shift

colorkey
alpha

Description

A SDL_PixelFormat describes the format of the pixel data stored aiikeds

— Stores surface format information

Pointer to thepalette or NULL if the
BitsPerPixel >8

The number of bits used to represent each pixel in
a surface. Usually 8, 16, 24 or 32.

The number of bytes used to represent each pixel
in a surface. Usually one to four.

Binary mask used to retrieve individual color
values

Precision loss of each color componenkdajioss)
Binary left shift of each color component in the
pixel value

Pixel value of transparent pixels
Overall surface alpha value

field of a

116

SDL_PixelFormat

SDL_SurfaceEvery surface stores a SDL_PixelFormat in finenat field.

If you wish to do pixel level modifications on a surface, then understanding how SDL stores its color
information is essential.

8-bit pixel formats are the easiest to understand. Since its an 8-bit format, we have 8
BitsPerPixel and 1BytesPerPixel . SinceBytesPerPixel is 1, all pixels are
represented by a Uint8 which contains an index atette ->colors . So, to determine the
color of a pixel in a 8-bit surface: we read the color index from surfagigets and we use that
index to read th&DL_Colorstructure from surfaceformat ->palette ->colors . Like so:

SDL_Surface *surface;
SDL_PixelFormat *fmt;
SDL_Color *color;
Uint8 index;

/* Create surface */

fmt=surface->format;

/* Check the bitdepth of the surface */
if(fmt->BitsPerPixel!'=8){
fprintf(stderr, "Not an 8-bit surface.\n");
return(-1);

}

/* Lock the surface */
SDL_LockSurface(surface);

/* Get the topleft pixel */
index=*(Uint8 *)surface->pixels;
color=fmt->palette->colors[index];

/* Unlock the surface */

SDL_UnlockSurface(surface);

printf("Pixel Color-> Red: %d, Green: %d, Blue: %d. Index: %d\n",
color->r, color->g, color->b, index);

Pixel formats above 8-bit are an entirely different experience. They are considered to be "TrueColor"
formats and the color information is stored in the pixels themselves, not in a palette. The mask, shift
and loss fields tell us how the color information is encoded. The mask fields allow us to isolate each
color component, the shift fields tell us the number of bits to the right of each component in the pixel

117

SDL_PixelFormat

value and the loss fields tell us the number of bits lost from each component when packing 8-bit
color component in a pixel.

/* Extracting color components from a 32-bit color value */
SDL_PixelFormat *fmt;

SDL_Surface *surface;

Uint32 temp, pixel;

uint8 red, green, blue, alpha;

fmt=surface->format;
SDL_LockSurface(surface);
pixel=*((Uint32*)surface->pixels);
SDL_UnlockSurface(surface);

/* Get Red component */

temp=pixel&mt->Rmask; /* Isolate red component */
temp=temp>>fmt->Rshift;/* Shift it down to 8-bit */
temp=temp<<fmt->Rloss; /* Expand to a full 8-bit number */
red=(Uint8)temp;

/* Get Green component */

temp=pixel&fmt->Gmask; /* Isolate green component */
temp=temp>>fmt->Gshift;/* Shift it down to 8-bit */
temp=temp<<fmt->Gloss; /* Expand to a full 8-bit number */
green=(Uint8)temp;

/* Get Blue component */

temp=pixel&mt->Bmask; /* Isolate blue component */
temp=temp>>fmt->Bshift;/* Shift it down to 8-bit */
temp=temp<<fmt->Bloss; /* Expand to a full 8-bit number */
blue=(Uint8)temp;

/* Get Alpha component */

temp=pixel&fmt->Amask; /* Isolate alpha component */
temp=temp>>fmt->Ashift;/* Shift it down to 8-bit */
temp=temp<<fmt->Aloss; /* Expand to a full 8-bit number */
alpha=(Uint8)temp;

printf("Pixel Color -> R: %d, G: %d, B: %d, A: %d\n", red, green, blue, alpha);

118

SDL_PixelFormat

See Also

SDL_SurfaceSDL_MapRGB

119

SDL_Surface

Name

SDL_Surface — Graphical Surface Structure

Structure Definition

typedef struct SDL_Surface {
Uint32 flags;
SDL_PixelFormat *format;

int w, h;

Uintl6 pitch;
void *pixels;

/* clipping information */
SDL_Rect clip_rect;

[* Read-only */
/* Read-only */
/* Read-only */
[* Read-only */
/* Read-write */

[* Read-only */

[* Reference count -- used when freeing surface */

int refcount;

/* Read-mostly */

/* This structure also contains private fields not shown here */

} SDL_Surface;

Structure Data

flags
format
w, h
pitch
pixels
clip_rect

Description

Surface flags

Pixel format

Width and height of the surface
Length of a surface scanline in bytes
Pointer to the actual pixel data
surface cliprectangle

SDL_Surface’s represent areas of "graphical" memory, memory that can be drawn to. The video
framebuffer is returned as a SDL_Surfacedml_SetVideoMode andSDL_GetVideoSurface

Most of the fields should be pretty obviowgsandh are the width and height of the surface in pixels.
pixels is a pointer to the actual pixel data, the surface shoulldtleedbefore accessing this field.
Theclip_rect field is the clipping rectangle as set BpL_SetClipRect

120

The following are supported in tHags

field.

SDL_Surface

SDL_SWSURFACE

Surface is stored in system memory

SDL_HWSURFACE

Surface is stored in video memory

SDL_ASYNCBLIT

Surface uses asynchronous blits if possible

SDL_ANYFORMAT

IAllows any pixel-format (Display surface)

SDL_HWPALETTE

Surface has exclusive palette

SDL_DOUBLEBUF

Surface is double buffered (Display surface)

SDL_FULLSCREEN

Surface is full screen (Display Surface)

SDL_OPENGL

Surface has an OpenGL context (Display Surf

ace)

SDL_OPENGLBLIT

Surface supports OpenGL blitting (Display
Surface)

SDL_RESIZABLE

Surface is resizable (Display Surface)

SDL_HWACCEL

Surface blit uses hardware acceleration

SDL_SRCCOLORKEY

Surface use colorkey blitting

SDL_RLEACCEL

Colorkey blitting is accelerated with RLE

SDL_SRCALPHA

Surface blit uses alpha blending

SDL_PREALLOC

Surface uses preallocated memory

See Also
SDL_PixelFormat

121

SDL_Videolnfo

Name
SDL_Videolnfo

— Video Target information

Structure Definition

typedef struct{
Uint32

hw_available:1;

Uint32 wm_available:1;

Uint32
Uint32
uint32
Uint32
Uint32
Uint32
Uint32
Uint32

blit_hw:1;
blit_ hw_CC:1;
blit_hw_A:1;
blit_sw:1;

blit_ sw_CC:1;
blit_sw_A:1;
blit_fill;
video_mem;

SDL_PixelFormat *vfmt;

} SDL_Videolnfo;

Structure Data

hw_available
wm_available
blit_hw
blit_hw_CC

blit_hw_A
blit_sw
blit_sw_CC

blit_sw_A
blit_fill
video_mem
vimt

Is it possible to create hardware surfaces?
Is there a window manager available
Are hardware to hardware blits accelerated?

Are hardware to hardware colorkey blits
accelerated?

Are hardware to hardware alpha blits accelerated?
Are software to hardware blits accelerated?

Are software to hardware colorkey blits
accelerated?

Are software to hardware alpha blits accelerated?
Are color fills accelerated?

Total amount of video memory in Kilobytes

Pixel formatof the video device

122

SDL_Videolnfo

Description

This (read-only) structure is returned BpL_GetVideolnfo . It contains information on either the
'best’ available mode (if called befo&DL_SetVideoMode) or the current video mode.

See Also

SDL_PixelFormatSDL_GetVideolnfo

123

SDL_Overlay

Name
SDL_Overlay — YUV video overlay

Structure Definition

typedef struct{
Uint32 format;
int w, h;
int planes;
uUintl6 *pitches;
uint8 **pixels;
Uint32 hw_overlay:1;
} SDL_Overlay;

Structure Data

format Overlay format (see below)

w, h Width and height of overlay

planes Number of planes in the overlay. Usually either 1
or3

pitches An array of pitches, one for each plane. Pitch is
the length of a row in bytes.

pixels An array of pointers to teh data of each plane. The
overlay should be locked before these pointers are
used.

hw_overlay This will be set to 1 if the overlay is hardware
accelerated.

Description

A SDL_Overlay is similar to &DL_Surfaceexcept it stores a YUV overlay. All the fields are read
only, except fopixels which should béockedbefore use. Théormat field stores the format of

the overlay which is one of the following:

#define SDL_YV12_OVERLAY 0x32315659 /* Planar mode: Y + V + U */
#define SDL_IYUV_OVERLAY 0x56555949 /* Planar mode: Y + U + V */
#define SDL_YUY2_OVERLAY 0x32595559 /[* Packed mode: YO+UO+Y1+V0 */

124

SDL_Overlay

#define SDL_UYVY_OVERLAY 0x59565955 /* Packed mode: UO+YO0+VO+Y1 */
#define SDL_YVYU_OVERLAY 0x55595659 /* Packed mode: YO0+VO+Y1+UO */

More information on YUV formats can be found at http://www.webartz.com/fourcc/indexyuv.htm.

See Also

SDL_CreateYUVOverlay , SDL_LockYUVOverlay , SDL_UnlockYUVOverlay
SDL_FreeYUVOverlay

125

Chapter 7. Window Management

SDL provides a small set of window management functions which allow applications to change their
title and toggle from windowed mode to fullscreen (if available)

SDL_WM_SetCaption

Name

SDL_WM_SetCaption — Sets the window tile and icon name.
Synopsis

#include "SDL.h"
void SDL_WM_SetCaption (const char *title, const char *icon);

Description

Sets the title-bar and icon name of the display window.

See Also

SDL_WM_GetCaption , SDL_WM_Setlcon

126

SDL_WM_GetCaption

Name

SDL_WM_GetCaption — Gets the window title and icon name.
Synopsis

#include "SDL.h"
void SDL_WM_GetCaption (char **title, char **icon);

Description

Set pointers to the windotitle ~ andicon name.

See Also

SDL_WM_SetCaption , SDL_WM_Setlcon

127

SDL_WM_ Setlcon

Name

SDL_WM_Setlcon — Sets the icon for the display window.
Synopsis

#include "SDL.h"
void SDL_WM_Setlcon (SDL_Surface *icon, Uint8 *mask);

Description

Sets the icon for the display window.
This function must be called before the first cal8DL_SetVideoMode
It takes aricon surface, and amask in MSB format.

If mask is NULL, the entire icon surface will be used as the icon.

Example

SDL_WM_Setlcon(SDL_LoadBMP("icon.bmp"), NULL);

See Also

SDL_SetVideoMode , SDL_WM_SetCaption

128

SDL_WM _IconifyWindow

Name
SDL_WM_ IconifyWindow — Iconify/Minimise the window

Synopsis

#include "SDL.h"
int SDL_WM_IconifyWindow (void);

Description

If the application is running in a window managed environment SDL attempts to iconify/minimise it.
If SDL_WM_lIconifyWindow is successful, the application will receivesaL_APPACTIVEloss
event.

Return Value

Returns non-zero on success or 0 if iconification is not support or was refused by the window
manager.

129

SDL_WM_ToggleFullScreen

Name
SDL_WM_ToggleFullScreen — Toggles fullscreen mode

Synopsis
#include "SDL.h"

int SDL_WM_ToggleFullScreen (SDL_Surface *surface);

Description

Toggles the application between windowed and fullscreen mode, if supported. (X11 is the only target
currently supported, BeOS support is experimental).

Return Value

Returns 0 on failure or 1 on success.

130

SDL_WM_ Grablnput

Name
SDL_WM_Grablnput — Grabs mouse and keyboard input.

Synopsis

#include "SDL.h"
SDL_GrabMode SDL_WM_Grablnput (SDL_GrabMode mode);

Description

Grabbing means that the mouse is confined to the application window, and nearly all keyboard input
is passed directly to the application, and not interpreted by a window manager, if any.

Whenmode is SDL_GRAB_QUERMe grab mode is not changed, but the current grab mode is
returned.

typedef enum {
SDL_GRAB_QUERY,
SDL_GRAB_OFF,
SDL_GRAB_ON

} SDL_GrabMode;

Return Value

The current/new SDL_GrabMode.

131

Chapter 8. Events

Introduction

Event handling allows your application to receive input from the user. Event handling is initalised
(along with video) with a call to:

SDL_Init(SDL_INIT_VIDEO);

Interally, SDL stores all the events waiting to be handled in an event queue. Using functions like
SDL_PollEvent andSDL_PeepEvents you can observe and handle waiting input events.

The key to event handling in SDL is tf8DL_Eventunion. The event queue itself is composed of a
series of SDL_Event unions, one for each waiting event. SDL_Event unions are read from the queue
with theSDL_PollEvent function and it is then up to the application to process the information
stored with them.

SDL Event Structures.

SDL_Event

Name

SDL_Event — General event structure

Structure Definition

typedef union{
uint8 type;
SDL_ActiveEvent active;
SDL_KeyboardEvent key;
SDL_MouseMotionEvent motion;
SDL_MouseButtonEvent button;
SDL_JoyAxisEvent jaxis;
SDL_JoyBallEvent jball;
SDL_JoyHatEvent jhat;
SDL_JoyButtonEvent jbutton;
SDL_ResizeEvent resize;
SDL_QuitEvent quit;

132

SDL_Event

SDL_UserEvent user;
SDL_SywWMEvent syswm;
} SDL_Event;

Structure Data

type The type of event

active Activation event

key Keyboard event

motion Mouse motion event

button Mouse button event

jaxis Joystick axis motion event

jball Joystick trackball motion event
jhat Joystick hat motion event
jbutton Joystick button event

resize Application window resize event
quit Application quit request event
user User defined event

syswm Undefined window manager event
Description

The SDL_Event union is the core to all event handling is SDL, its probably the most important
structure after SDL_Surface. SDL_Event is a union of all event structures used in SDL, using itis a
simple matter of knowing which union member relates to which etygrg .

Event type Event Structure
SDL_ACTIVEEVENT SDL_ActiveEvent
SDL_KEYDOWN/UP SDL_KeyboardEvent
SDL_MOUSEMOTION SDL_MouseMotionEvent
SDL_MOUSEBUTTONDOWN/UP SDL_MouseButtonEvent
SDL_JOYAXISMOTION SDL_JoyAxisEvent
SDL_JOYBALLMOTION SDL_JoyBallEvent
SDL_JOYHATMOTION SDL_JoyHatEvent
SDL_JOYBUTTONDOWN/UP SDL_JoyButtonEvent
SDL_QUIT SDL_QuitEvent

133

SDL_Event

Event type Event Structure
SDL_SYSWMEVENT SDL_SysWMEvent
SDL_VIDEORESIZE SDL_ResizeEvent
SDL_USEREVENT SDL_UserEvent
Use

The SDL_Event structure has two uses

- Reading events on the event queue
- Placing events on the event queue

Reading events from the event queue is done with eibér PollEvent or SDL_PeepEvents .
We'll useSDL_PollEvent and step through an example.

First off, we create an empty SDL_Event structure.
SDL_Event test_event;

SDL_PollEvent removes the next event from the event queue, if there are no events on the queue it
returns 0 otherwise it returns 1. We usetile loop to process each eventin turn.

while(SDL_PollEvent(&test_event)) {

TheSDL_PollEvent function take a pointer to an SDL_Event structure that is to be filled with
event information. We know that 8DL_PollEvent removes an event from the queue then the
event information will be placed in our test_event structure, but we also know thigiobef event
will be placed in theype member of test_event. So to handle each etygreé seperately we use a
switch statement.

switch(test_event.type) {

We need to know what kind of events we're looking fardthe eventype 's of those events. So

lets assume we want to detect where the user is moving the mouse pointer within our application. We
look through our event types and notice tBat._ MOUSEMOTION, more than likely, the event we're
looking for. A little moreresearch tells use thabL_MOUSEMOTIO&Vents are handled within the
SDL_MouseMotionEverstructure which is thenotion member of SDL_Event. We can check for
theSDL_MOUSEMOTIO&Venttype within ourswitch statement like so:

case SDL_MOUSEMOTION:
All we need do now is read the information out of tim@tion member of test_event.

printf("We got a motion event.\n");

134

SDL_Event

printf("Current mouse position is: (%d, %d)\n", test_event.motion.x, test_event.motion.y);
break;
default:
printf("Unhandled Event\n");
break;

}
}

printf("Event queue empty.\n");

It is also possible to push events onto the event queue and so use it as a two-way communication
path. BothSDL_PushEvent andSDL_PeepEvents allow you to place events onto the event queue.
This is usually used to placesbL._USEREVEN®DN the event queue, however you could use it to post
fake input events if you wished. Creating your own events is a simple matter of choosing the event
type you want, setting thiype member and filling the appropriate member structure with
information.

SDL_Event user_event;

user_event.type=SDL_USEREVENT,;
user_event.user.code=2;
user_event.user.datal=NULL;
user_event.user.data2=NULL;
SDL_PushEvent(&user_event);

See Also

SDL_PollEvent , SDL_PushEvent , SDL_PeepEvents

135

SDL_ActiveEvent

Name

SDL_ActiveEvent — Application visibility event structure

Structure Definition

typedef struct{
uint8 type;
uint8 gain;
uint8 state;

} SDL_ActiveEvent;

Structure Data

type SDL_ACTIVEEVENT.
gain Oifthe eventisaloss or 1ifitis a gain.
state SDL_APPMOUSEFOCIf3nouse focus was gained

or lost,SDL_APPINPUTFOCU¥ input focus was
gained or lost, o6DL_APPACTIVEIf the
application was iconifiedgain =0) or
restoredgain =1).

Description

SDL_ActiveEvent is a member of tHf&DL_Eventunion and is used when an event of type
SDL_ACTIVEEVENTIs reported.

When the mouse leaves or enters the window aig®ala APPMOUSEFOCWH#e activation event
occurs, if the mouse entered the window tlgain will be 1, otherwisegain will be 0. A
SDL_APPINPUTFOCU$ype activation event occurs when the application loses or gains keyboard
focus. This usually occurs when another application is made active. Finsibl, aAPPACTIVEtype
event occurs when the application is either minimised/iconifigdn(=0) or restored.

Note: This event does not occur when an application window is first created.

136

SDL_ActiveEvent

See Also

SDL_Evenf SDL_GetAppState

137

SDL_KeyboardEvent

Name

SDL_KeyboardEvent — Keyboard event structure

Structure Definition

typedef struct{
uint8 type;
Uint8 state;
SDL_keysym keysym;
} SDL_KeyboardEvent;

Structure Data

type SDL_KEYDOW®I SDL_KEYUP
state SDL_PRESSEDr SDL_RELEASED
keysym Contains key press information
Description

SDL_KeyboardEvent is a member of tB®L_Eventunion and is used when an event of type
SDL_KEYDOWSF SDL_KEYURS reported.

Thetype andstate actually report the same information, they just use different values to do it! A
keyboard event occurs when a key is releasgoe(=SDK_KEYUPor state =SDL_RELEASEpand
when a key is pressetiype =SDL_KEYDOW®F state =SDL_PRESSED The information on what

key was pressed or released is in Kegsymstructure.

Note: Repeating SDL_KEYDOW8&Vents will occur if key repeat is enabled (see
SDL_EnableKeyRepeat).

See Also

SDL_Event SDL_keysym SDL_EnableKeyRepeat , SDL_EnableUNICODE

138

SDL_MouseMotionEvent

Name

SDL_MouseMotionEvent — Mouse motion event structure

Structure Definition

typedef struct{
uint8 type;
Uint8 state;
uintl6é x, v;
Sintl6 xrel, yrel;
} SDL_MouseMotionEvent;

Structure Data

type SDL_MOUSEMOTION

state The current button state

X,y The X/Y coordinates of the mouse
xrel , yrel Relative motion in the X/Y direction
Description

SDL_MouseMotionEvent is a member of tB®L_Eventunion and is used when an event of type
SDL_MOUSEMOTION reported.

Simply put, aSDL_MOUSEMOTIOpe event occurs when a user moves the mouse within the
application window or whesDL_WarpMouse is called. Both the absolute& @ndy) and relative
(xrel andyrel) coordinates are reported along with the current button ststate(). The button
state can be interpreted using $BL_BUTTONNacro (see&DL_GetMouseState).

If the cursor is hiddengDL_ShowCursor (0)) and the input is grabbed

(SDL_WM_Grabinput (SDL_GRAB_ON), then the mouse will give relative motion events even

when the cursor reaches the edge fo the screen. This is currently only implemented on Windows and
Linux/Unix-a-likes.

139

SDL_MouseMotionEvent

See Also

SDL_Event SDL_MouseButtonEvent

140

SDL_MouseButtonEvent

Name

SDL_MouseButtonEvent — Mouse button event structure

Structure Definition

typedef struct{
uint8 type;
Uint8 button;
uint8 state;
uintl6é x, v;
} SDL_MouseButtonEvent;

Structure Data

type SDL_MOUSEBUTTONDO®SYN
SDL_MOUSEBUTTONUP
button The mouse button index (SDL_BUTTON_LEFT,

SDL_BUTTON_MIDDLE,
SDL_BUTTON_RIGHT)

state SDL_PRESSE®r SDL_RELEASED

X,y The X/Y coordinates of the mouse at press/release
time

Description

SDL_MouseButtonEvent is a member of tBBL_Eventunion and is used when an event of type
SDL_MOUSEBUTTONDOWYISDL_MOUSEBUTTONfreported.

When a mouse button press or release is detected then number of the button pressed (from 1 to 255,
with 1 usually being the left button and 2 the right) is placed bitton |, the position of the mouse

when this event occured is stored in thand they fields. LikeSDL_KeyboardEveninformation

on whether the event was a press or a release event is stored in bythehandstate fields, but

this should be obvious.

141

SDL_MouseButtonEvent

See Also

SDL_Event SDL_MouseMotionEvent

142

SDL_JoyAxisEvent

Name

SDL_JoyAxisEvent — Joystick axis motion event structure

Structure Definition

typedef struct{
uint8 type;
Uint8 which;
uUint8 axis;
Sintl6 value;
} SDL_JoyAxisEvent;

Structure Data

type SDL_JOYAXISMOTION

which Joystick device index

axis Joystick axis index

value Axis value (range: -32768 to 32767)
Description

SDL_JoyAxisEvent is a member of ti8DL_Eventunion and is used when an event of type
SDL_JOYAXISMOTIONS reported.

A SDL_JOYAXISMOTIONevent occurs when ever a user moves an axis on the joystick. The field
which is the index of the joystick that reported the event arid is the index of the axis (for a
more detailed explaination see thaystick sectiohp value is the current position of the axis.

See Also

SDL_Event Joystick FunctionsSDL_JoystickEventState , SDL_JoystickGetAxis

143

SDL_JoyButtonEvent

Name

SDL_JoyButtonEvent =~ — Joystick button event structure

Structure Definition

typedef struct{
uint8 type;
Uint8 which;
Uint8 button;
Uint8 state;
} SDL_JoyButtonEvent;

Structure Data

type SDL_JOYBUTTONDOWNSDL_JOYBUTTONUP
which Joystick device index

button Joystick button index

state SDL_PRESSEmr SDL_RELEASED
Description

SDL_JoyButtonEvent is a member of tB®L_Eventunion and is used when an event of type
SDL_JOYBUTTONDOWNKSDL_JOYBUTTONUR reported.

A SDL_JOYBUTTONDOWNSDL_JOYBUTTONUBvent occurs when ever a user presses or releases a
button on a joystick. The fieldshich is the index of the joystick that reported the event and

button is the index of the button (for a more detailed explaination seddlstick section

state is the current state or the button which is eitB&L._PRESSEmr SDL_RELEASED

See Also

SDL_Event Joystick FunctionsSDL_JoystickEventState , SDL_JoystickGetButton

144

SDL_JoyHatEvent

Name

SDL_JoyHatEvent — Joystick hat position change event structure

Structure Definition

typedef struct{
uint8 type;
Uint8 which;
Uint8 hat;
Uint8 value;

} SDL_JoyHatEvent;

Structure Data

type SDL_JOY

which Joystick device index
hat Joystick hat index
value Hat position
Description

SDL_JoyHatEvent is a member of tB®L_Eventunion and is used when an event of type
SDL_JOYHATMOTIOM reported.

A SDL_JOYHATMOTIORvent occurs when ever a user moves a hat on the joystick. Thevidth

is the index of the joystick that reported the event hatl is the index of the hat (for a more detailed
exlaination see thdoystick sectioj value is the current position of the hat. It is a logically OR'd
combination of the following values (whose meanings should be pretty obvious:) :

SDL_HAT_CENTERED
SDL_HAT UP
SDL_HAT RIGHT
SDL_HAT_DOWN
SDL_HAT_LEFT

The following defines are also provided:

SDL_HAT_RIGHTUP

145

SDL_JoyHatEvent

SDL_HAT_RIGHTDOWN
SDL_HAT_LEFTUP
SDL_HAT_LEFTDOWN

See Also

SDL_Event Joystick FunctionsSDL_JoystickEventState , SDL_JoystickGetHat

146

SDL_JoyBallEvent

Name

SDL_JoyBallEvent = — Joystick trackball motion event structure

Structure Definition

typedef struct{
uint8 type;
Uint8 which;
uint8 ball;
Sintl6 xrel, yrel;
} SDL_JoyBallEvent;

Structure Data

type SDL_JOYBALLMOTION

which Joystick device index

ball Joystick trackball index

xrel , yrel The relative motion in the X/Y direction
Description

SDL_JoyBallEvent is a member of ti#DL_Eventunion and is used when an event of type
SDL_JOYBALLMOTIONS reported.

A SDL_JOYBALLMOTIOMvVent occurs when a user moves a trackball on the joystick. The field

which is the index of the joystick that reported the event Ball is the index of the trackball (for

a more detailed explaination see th@ystick section Trackballs only return relative motion, this is

the change in position on the ball since it was last polled (last cycle of the event loop) and it is stored
in xrel andyrel

See Also

SDL_Event Joystick FunctionsSDL_JoystickEventState , SDL_JoystickGetBall

147

SDL_ResizeEvent

Name

SDL_ResizeEvent — Window resize event structure

Structure Definition

typedef struct{
uint8 type;
int w, h;

} SDL_ResizeEvent;

Structure Data

type SDL_VIDEORESIZE
w, h New width and height of the window
Description

SDL_ResizeEvent is a member of t8BL_Eventunion and is used when an event of type
SDL_VIDEORESIZEis reported.

WhenSDL_RESIZABLEIs passed asféag to SDL_SetVideoMode the user is allowed to resize
the applications window. When the window is resizedsa._VIDEORESIZEis report, with the new
window width and height values storedwnandh, respectively. When a@DL_VIDEORESIZEis
recieved the window should be resized to the new dimensions 88ihgSetVideoMode .

See Also

SDL_Evenf SDL_SetVideoMode

148

SDL_SysWMEvent

Name

SDL_SysWMEvent— Platform-dependent window manager event.

Description

The system window manager event contains a pointer to system-specific information about unknown
window manager events. If you enable this event using_EventState() , it will be generated
whenever unhandled events are received from the window manager. This can be used, for example,
to implement cut-and-paste in your application.
typedef struct {
uint8 type; /* Always SDL_SysWM */
} SDL_SysWMEvent;

If you want to obtain system-specific information about the window manager, you can fill the version
member of a SDL_SysWMinfo structure (details can be four@hn_syswm.h , which must be
included) using th&DL_VERSION() macro found inrSDL_version.h , and pass it to the function:

int SDL_GetWMlInfo (SDL_SysWMinfo *info);

See Also

SDL_EventState

149

SDL_UserEvent

Name

SDL_UserEvent — A user-defined event type

Structure Definition

typedef struct{
uint8 type;
int code;
void *datal;
void *data2;

} SDL_UserEvent;

Structure Data

type
code
datal
data2

Description

SDL_USEREVENThrough toSDL_NUMEVENTS-1
User defined event code

User defined data pointer

User defined data pointer

SDL_UserEvent is in thaser member of the structur8DL_Event This event is unique, it is never
created by SDL but only by the user. The event can be pushed onto the event queue using
SDL_PushEvent . The contents of the structure members or completely up to the programmer, the
only requirement is thaype is a value fronSDL_USEREVENT0 SDL_NUMEVENTS-{inclusive).

Examples

SDL_Event event;

event.type = SDL_USEREVENT;
event.user.code = my_event_code;

event.user.datal = significant_data;

event.user.data2 = O;
SDL_PushEvent(&event);

150

SDL_UserEvent

See Also

SDL_EvenfSDL_PushEvent

151

SDL_QuitEvent

Name

SDL_QuitEvent — Quit requested event

Structure Definition

typedef struct{
uint8 type
} SDL_QuitEvent;

Structure Data

type SDL_QUIT
Description

SDL_QUuitEvent is a member of tf&DL_Eventunion and is used whan an event of tyglel._QUIT
is reported.

As can be seen, the SDL_QuitEvent structure serves no useful purpose. The event itself, on the other
hand, is very important. If you filter out or ignore a quit event then it is impossible for the user to

close the window. On the other hand, if you do accept a quit event then the application window will

be closed, and screen updates will still report success event though the application will no longer be
visible.

Note: The macro SDL_QuitRequested will return non-zero if a quit event is pending

See Also

SDL_Event SDL_SetEventFilter

152

SDL_keysym

Name

SDL_keysym — Keysym structure

Structure Definition

typedef struct{
Uint8 scancode;
SDLKey sym;
SDLMod mod;
Uintl6 unicode;
} SDL_keysym;

Structure Data

scancode Hardware specific scancode
sym SDL virtual keysym

mod Current key modifiers
unicode Translated character
Description

The SDL_keysym structure is used by reporting key presses and releases since it is a part of the
SDL_KeyboardEvent

Thescancode field should generally be left alone, it is the hardware dependent scancode returned
by the keyboard. Theym field is extremely useful. It is the SDL-defined value of the key &B&
Key Syms This field is very useful when you are checking for certain key presses, like so:

while(SDL_PollEvent(&event)){
switch(event.type){
case SDL_KEYDOWN:
if(event.key.keysym.sym==SDLK_LEFT)
move_left();
break;

153

SDL_keysym

mod stores the current state of the keyboard modifiers as explair&olLinGetModState . The

unicode is only used when UNICODE translation is enabled v@thi._EnableUNICODE. If

unicode is non-zero then this a the UNICODE character corresponding to the keypress. If the high
9 bits of the character are 0, then this maps to the equivalent ASCII character:

char ch;

if ((keysym.unicode & OxFF80) == 0) {
ch = keysym.unicode & OXx7F;

}

else {
printf("An International Character.\n");

}

UNICODE translation does have a slight overhead so don’t enable it unless its needed.

See Also
SDLKey

154

SDLKey

Name
SDLKey — Keysym definitions.

Description

Table 8-1. SDL Keysym definitions

SDLKey IASCII value Common name
SDLK_BACKSPACE '\b’ backspace
SDLK_TAB \t' tab
SDLK_CLEAR clear
SDLK_RETURN \r’ return
SDLK_PAUSE pause
SDLK_ESCAPE ‘A escape
SDLK_SPACE B Space
SDLK_EXCLAIM i exclaim
SDLK_QUOTEDBL quotedbl
SDLK_HASH # hash
SDLK_DOLLAR 'S dollar
SDLK_AMPERSAND & ampersand
SDLK_QUOTE quote
SDLK_LEFTPAREN (left parenthesis
SDLK_RIGHTPAREN)’ right parenthesis
SDLK_ASTERISK i asterisk
SDLK_PLUS '+’ plus sign
SDLK_COMMA comma
SDLK_MINUS - minus sign
SDLK_PERIOD period
SDLK_SLASH A forward slash
SDLK_0 0’ 0

SDLK_1 1’ 1

SDLK_2 2’ 2

SDLK_3 '3 3

155

SDLKey

SDLKey ASCII value Common name
SDLK_4 4 4

SDLK_5 5’ 5

SDLK_6 6’ 6

SDLK_7 "7’ 7

SDLK_8 '8’ 38

SDLK_9 ‘9’ 9
SDLK_COLON B colon
SDLK_SEMICOLON 5 semicolon
SDLK_LESS < less-than sign
SDLK_EQUALS =’ equals sign
SDLK_GREATER > greater-than sign
SDLK_QUESTION 7’ question mark
SDLK_AT ‘@’ at
SDLK_LEFTBRACKET T left bracket
SDLK_BACKSLASH '\ backslash
SDLK_RIGHTBRACKET T right bracket
SDLK_CARET N caret
SDLK_UNDERSCORE . underscore
SDLK_BACKQUOTE grave

SDLK a ‘a’ a

SDLK_b b’ b

SDLK ¢ 'c’ c

SDLK _d 'd’ d

SDLK_e ‘e’ e

SDLK_f f’ f

SDLK g ‘g’ g

SDLK _h ‘h’ h

SDLK i i) i

SDLK_j il i

SDLK_k 'k’ k

SDLK | i) I

SDLK_m 'm’ m

SDLK_n n’ n

SDLK_o 0’ (0]

SDLK_p i p

156

SDLKey

SDLKey IASCII value Common name
SDLK_q q q
SDLK_r is r
SDLK_s 'S’ S
SDLK_t is it
SDLK_u ‘U’ u
SDLK_v \4 %
SDLK_w W w
SDLK_x X' X
SDLK_y 'y’ v
SDLK_z v4 z
SDLK_DELETE e delete
SDLK_KPO keypad O
SDLK_KP1 keypad 1
SDLK_KP2 keypad 2
SDLK_KP3 keypad 3
SDLK_KP4 keypad 4
SDLK_KP5 keypad 5
SDLK_KP6 keypad 6
SDLK_KP7 keypad 7
SDLK_KP8 keypad 8
SDLK_KP9 keypad 9

SDLK_KP_PERIOD

keypad period

SDLK_KP_DIVIDE

keypad divide

SDLK_KP_MULTIPLY

keypad multiply

SDLK_KP_MINUS

keypad minus

SDLK_KP_PLUS

keypad plus

SDLK_KP_ENTER

keypad enter

SDLK_KP_EQUALS

keypad equals

SDLK_UP up arrow
SDLK_DOWN down arrow
SDLK_RIGHT right arrow
SDLK_LEFT left arrow
SDLK_INSERT insert
SDLK_HOME home
SDLK_END end

157

SDLKey

SDLKey IASCII value Common name
SDLK_PAGEUP page up
SDLK_PAGEDOWN page down
SDLK_F1 F1
SDLK_F2 F2
SDLK_F3 F3
SDLK_F4 F4
SDLK_F5 F5
SDLK_F6 F6
SDLK_F7 F7
SDLK_F8 F8
SDLK_F9 F9
SDLK_F10 F10
SDLK_F11 F11
SDLK_F12 F12
SDLK_F13 F13
SDLK_F14 F14
SDLK_F15 F15
SDLK_NUMLOCK numlock
SDLK_CAPSLOCK capslock
SDLK_SCROLLOCK scrollock
SDLK_RSHIFT right shift
SDLK_LSHIFT left shift
SDLK_RCTRL right ctrl
SDLK_LCTRL left ctrl
SDLK_RALT right alt
SDLK_LALT left alt
SDLK_RMETA right meta
SDLK_LMETA left meta

SDLK_LSUPER

left windows key

SDLK_RSUPER

right windows key

SDLK_MODE mode shift
SDLK_HELP help
SDLK_PRINT print-screen
SDLK_SYSREQ SysRq
SDLK_BREAK break

158

SDLKey

SDLKey IASCII value Common name
SDLK_MENU menu
SDLK_POWER power
SDLK_EURO euro

Table 8-2. SDL modifier definitions

SDL Modifier Meaning
KMOD_NONE No modifiers applicable
KMOD_NUM Numlock is down
KMOD_CAPS Capslock is down
KMOD_LCTRL Left Control is down
KMOD_RCTRL Right Control is down
KMOD_RSHIFT Right Shift is down
KMOD_LSHIFT Left Shift is down
KMOD_RALT Right Alt is down
KMOD_LALT Left Alt is down
KMOD_CTRL /A Control key is down
KMOD_SHIFT /A Shift key is down
KMOD_ALT An Alt key is down

159

Event Functions.

SDL_PumpEvents

Name

SDL_PumpEvents — Pumps the event loop, gathering events from the input devices.
Synopsis

#include "SDL.h"
void SDL_PumpEvents (void);

Description

Pumps the event loop, gathering events from the input devices.

SDL_PumpEvents gathers all the pending input information from devices and places it on the event
gueue. Without calls t8DL_PumpEvents no events would ever be placed on the queue. Often calls
the need foSDL_PumpEvents is hidden from the user sin@&DL_PollEvent and

SDL_WaitEvent implicitly call SDL_PumpEvents . However, if you are not polling or waiting for
events (e.g. your filtering them), then you must &il._PumpEvents to force an event queue

update.

Note: You can only call this function in the thread that set the video mode.

See Also

SDL_PollEvent

160

SDL_PeepEvents

Name

SDL_PeepEvents — Checks the event queue for messages and optionally returns them.
Synopsis

#include "SDL.h"
int SDL_PeepEvents (SDL_Event *events, int numevents, SDL_eventaction
action, Uint32 mask);

Description

Checks the event queue for messages and optionally returns them.

If action is SDL_ADDEVENTuUp tonumevents events will be added to the back of the event
queue.

If action is SDL_PEEKEVEN;uUp tonumevents events at the front of the event queue, matching
mask, will be returned and will not be removed from the queue.

If action is SDL_GETEVEN;up tonumevents events at the front of the event queue, matching
mask, will be returned and will be removed from the queue.

This function is thread-safe.

Return Value

This function returns the number of events actually stored, or -1 if there was an error.

See Also

SDL_EveniSDL_PollEvent , SDL_PushEvent

161

SDL_PollEvent

Name

SDL_PollEvent — Polls for currently pending events.
Synopsis

#include "SDL.h"
int SDL_PollEvent (SDL_Event *event);

Description

Polls for currently pending events, and returns 1 if there are any pending events, or 0 if there are
none available.

If event is notNULL, the next event is removed from the queue and stored in that area.

Examples

SDL_Event event; /* Event structure */

/* Check for events */
while(SDL_PollEvent(&event)){ /* Loop until there are no events left on the queue */
switch(event.type){ /* Process the appropiate event type */
case SDL_KEYDOWN: /* Handle a KEYDOWN event */
printf("Oh! Key press\n");
break;
case SDL_MOUSEMOTION:

default: /* Report an unhandled event */
printf("l don’t know what this event is'\n");

162

SDL_PollEvent

See Also

SDL_EvenfSDL_WaitEvent , SDL_PeepEvents

163

SDL_WaitEvent

Name

SDL_WaitEvent — Waits indefinitely for the next available event.
Synopsis
#include "SDL.h"

int SDL_WaitEvent (SDL_Event *event);

Description

Waits indefinitely for the next available event, returning 1, or O if there was an error while waiting
for events.

If event is notNULL, the next event is removed from the queue and stored in that area.

See Also

SDL_Event SDL_PollEvent

164

SDL_PushEvent

Name

SDL_PushEvent — Pushes an event onto the event queue
Synopsis

#include "SDL.h"
int SDL_PushEvent (SDL_Event *event);

Description

The event queue can actually be used as a two way communication channel. Not only can events be
read from the queue, but the user can also push their own events @averit. is a pointer to the
event structure you wish to push onto the queue.

Note: Pushing device input events onto the queue doesn’t modify the state of the device within
SDL.

Return Value
Returns 0 on success or -1 if the event couldn’t be pushed.

Examples
SeeSDL_Event

See Also

SDL_PollEvent , SDL_PeepEvents , SDL_Event

165

SDL_SetEventFilter

Name

SDL_SetEventFilter — Sets up afilter to process all events before they are posted to the event
queue.

Synopsis

#include "SDL.h"
void SDL_SetEventFilter (SDL_EventFilter filter);

Description

This function sets up a filter to process all events before they are posted to the event queue. This is a
very powerful and flexible feature. The filter is prototyped as:

typedef int (*SDL_EventFilter)(const SDL_Event *event);

If the filter returns 1, then the event will be added to the internal queue. If it returns 0, then the event
will be dropped from the queue. This allows selective filtering of dynamically.

There is one caveat when dealing with 8®L_QUITEVENTevent type. The event filter is only

called when the window manager desires to close the application window. If the event filter returns
1, then the window will be closed, otherwise the window will remain open if possible. If the quit
event is generated by an interrupt signal, it will bypass the internal queue and be delivered to the
application at the next event poll.

Note: Events pushed onto the queue with SDL_PushEvent or SDL_PeepEvents do not get
passed through the event filter.

Note: Be Careful! The event filter function may run in a different thread so be careful what you
do within it.

166

SDL_SetEventFilter

See Also

SDL_Evenf SDL_GetEventFilter , SDL_PushEvent

167

SDL_GetEventFilter

Name

SDL_GetEventFilter — Retrieves a pointer to he event filter
Synopsis
#include "SDL.h"

SDL_EventFilter SDL_GetEventFilter (void);

Description

This function retrieces a pointer to the event filter that was previously set using
SDL_SetEventFilter . An SDL_EventFilter function is defined as:

typedef int (*SDL_EventFilter)(const SDL_Event *event);

Return Value

Returns a pointer to the event filter ®ULLif no filter has been set.

See Also

SDL_Evenf SDL_SetEventFilter

168

SDL_EventState

Name

SDL_EventState — This function allows you to set the state of processing certain events.
Synopsis

#include "SDL.h"
Uint8 SDL_EventState (Uint8 type, int state);

Description

This function allows you to set the state of processing certain ¢ypat’s.

If state is set toSDL_IGNORE that eventype will be automatically dropped from the event
gueue and will not be filtered.

If state is settoSDL_ENABLE that eventype will be processed normally.

If state is settoSDL_QUERYSDL_EventState will return the current processing state of the
specified eventype .

A list of eventtype ’s can be found in th&DL_Eventsection.

See Also
SDL_Event

169

SDL_GetKeyState

Name

SDL_GetKeyState — Get a snapshot of the current keyboard state
Synopsis

#include "SDL.h"
uint8 * SDL_GetKeyState (int *numkeys);

Description

Gets a snapshot of the current keyboard state. The current state is return as a pointer to an array, the
size of this array is stored imumkeys . The array is indexed by th&DLK_* symbols. A value of 1
means the key is pressed and a value of 0 means its not.

Note: Use SDL_PumpEvents to update the state array.

Example

Uint8 *keystate = SDL_GetKeyState(NULL);
if (keystate[SDLK_RETURN]) printf("Return Key Pressed.\n");

See Also

SDL Key Symbols , SDL_PumpEvents

170

SDL_GetModState

Name

SDL_GetModState — Get the state of modifier keys.
Synopsis

#include "SDL.h"
SDLMod SDL_GetModState (void);

Description

Returns the current of the modifier keys (CTRL, ALT, etc.).

Return Value

The return value can be an OR’d combination of the SDLMod enum.

SDLMod

typedef enum {
KMOD_NONE = 0x0000,
KMOD_LSHIFT= 0x0001,
KMOD_RSHIFT= 0x0002,
KMOD_LCTRL = 0x0040,
KMOD_RCTRL = 0x0080,
KMOD_LALT = 0x0100,

KMOD_RALT = 0x0200,

KMOD_LMETA = 0x0400,

KMOD_RMETA = 0x0800,

KMOD_NUM = 0x1000,

KMOD_CAPS = 0x2000,

KMOD_MODE = 0x4000,
} SDLMod;

SDL also defines the following symbols for convenience:

#define KMOD_CTRL (KMOD_LCTRL|KMOD_RCTRL)
#define KMOD_SHIFT (KMOD_LSHIFT|KMOD_RSHIFT)
#define KMOD_ALT (KMOD_LALT|KMOD_RALT)
#define KMOD_META (KMOD_LMETA|KMOD_RMETA)

171

SDL_GetModState

See Also

SDL_GetKeyState

172

SDL_SetModState

Name

SDL_SetModState — Set the current key modifier state
Synopsis

#include "SDL.h"
void SDL_SetModState (SDLMod modstate);

Description

The inverse oEDL_GetModState , SDL_SetModState allows you to impose modifier key states
on your application.

Simply pass your desired modifier states imodstate . This value my be a logical OR'd
combination of the following:

typedef enum {
KMOD_NONE = 0x0000,
KMOD_LSHIFT= 0x0001,
KMOD_RSHIFT= 0x0002,
KMOD_LCTRL = 0x0040,
KMOD_RCTRL = 0x0080,
KMOD_LALT = 0x0100,
KMOD_RALT = 0x0200,
KMOD_LMETA = 0x0400,
KMOD_RMETA 0x0800,
KMOD_NUM = 0x1000,
KMOD_CAPS = 0x2000,
KMOD_MODE = 0x4000,

} SDLMod;

See Also

SDL_GetModState

173

SDL_GetKeyName

Name
SDL_GetKeyName — Get the name of an SDL virtual keysym

Synopsis

#include "SDL.h"
char * SDL_GetKeyName(SDLKey key);

Description
Returns the SDL-defined name of tBBLKeykey .

See Also
SDLKey

174

SDL_EnableUNICODE

Name
SDL_EnableUNICODE — Enable UNICODE translation

Synopsis

#include "SDL.h"
int SDL_EnableUNICODE(int enable);

Description
Enables/Disables UNICODE keyboard translation.

If you wish to translate a keysym to it's printable representation, you need to enable UNICODE
translation using this functiorefiable =0) and then look in thenicode member of the
SDL_keysymstructure. This value will be zero for keysyms that do not have a printable
representation. UNICODE translation is disabled by default as the conversion can cause a slight
overhead.

Return Value

Returns the previous translation mode.

See Also
SDL_keysym

175

SDL_EnableKeyRepeat

Name

SDL_EnableKeyRepeat — Set keyboard repeat rate.
Synopsis

#include "SDL.h"
int SDL_EnableKeyRepeat (int delay, int interval);

Description

Enables or disables the keyboard repeat dtay specifies how long the key must be pressed
before it begins repeating, it then repeats at the speed specifiatetbyal . Bothdelay and
interval are expressed in milliseconds.

Settingdelay to O disables key repeating completely. Good default values are
SDL_DEFAULT_REPEAT_DELAaNd SDL_DEFAULT_REPEAT_INTERVAL.

Return Value

Returns 0 on success and -1 on failure.

176

SDL_GetMouseState

Name

SDL_GetMouseState — Retrieve the current state of the mouse
Synopsis

#include "SDL.h"
Uint8 SDL_GetMouseState (int *x, int *y);

Description

The current button state is returned as a button bitmask, which can be tested using the
SDL_BUTTON(X) macros, and andy are set to the current mouse cursor position. You can pass
NULL for eitherx ory.

Example
SDL_PumpEvents();

if(SDL_GetMouseState(NULL, NULL)&SDL_BUTTON(1))
printf("Mouse Button 1(left) is pressed.\n");

See Also

SDL_GetRelativeMouseState , SDL_PumpEvents

177

SDL_GetRelativeMouseState

Name

SDL_GetRelativeMouseState — Retrieve the current state of the mouse
Synopsis

#include "SDL.h"
Uint8 SDL_GetRelativeMouseState (int *x, int *y);

Description

The current button state is returned as a button bitmask, which can be tested using the
SDL_BUTTON(X) macros, and andy are set to the change in the mouse position since the last call
to SDL_GetRelativeMouseState or since event initialization. You can paseLL for eitherx or

y.

See Also

SDL_GetMouseState

178

SDL_GetAppState

Name

SDL_GetAppState — Get the state of the application
Synopsis

#include "SDL.h"
Uint8 SDL_GetAppState (void);

Description

This function returns the current state of the application. The value returned is a bitwise combination
of:

SDL_APPMOUSEFOCUS The application has mouse focus.
SDL_APPINPUTFOCUS The application has keyboard focus

SDL_APPACTIVE The application is visible

See Also

SDL_ActiveEvent

179

SDL_JoystickEventState

Name

SDL_JoystickEventState — Enable/disable joystick event polling
Synopsis

#include "SDL.h"
int SDL_JoystickEventState (int state);

Description

This function is used to enable or disable joystick event processing. With joystick event processing
disabled you will have to update joystick states w8thL_JoystickUpdate ~ and read the joystick
information manuallystate is eitherSDL_QUERYSDL_ENABLEOr SDL_IGNORE

Note: Joystick event handling is prefered

Return Value

If state is SDL_QUERYhen the current state is returned, otherwise the new procestsitey is
returned.

See Also

SDL Joystick FunctionsSDL_JoystickUpdate , SDL_JoyAxisEventSDL_JoyBallEvent
SDL_JoyButtonEveniSDL_JoyHatEvent

180

Chapter 9. Joystick

Joysticks, and other similar input devices, have a very strong role in game playing and SDL provides
comprehensive support for them. Axes, Buttons, POV Hats and trackballs are all supported.

Joystick support is initialized by passed #eL_INIT_JOYSTICK flag toSDL_Init . Once
initilized joysticks must be opened usis@L_JoystickOpen

While using the functions describe in this secton may seem like the best way to access and read from
joysticks, in most cases they aren't. Ideally joysticks should be read usirmyémésystem. To

enable this, you must set the joystick event processing stateSithJoystickEventState

Joysticks must bepenedefore they can be used of course.

Note: If you are not handling the joystick via the event queue then you must explicitly request a
joystick update by calling SDL_JoystickUpdate

Note: Force Feedback is not yet support. Sam (slouken@libsdl.org) is soliciting suggestions
from people with force-feedback experience on the best wat to desgin the API.

SDL_NumJoysticks

Name

SDL_NumJoysticks — Count available joysticks.

Synopsis

#include "SDL.h"
int SDL_NumJoysticks (void);

Description

Counts the number of joysticks attached to the system.

181

SDL_NumJoysticks

Return Value

Returns the number of attached joysticks

See Also

SDL_JoystickName , SDL_JoystickOpen

182

SDL_JoystickName

Name

SDL_JoystickName — Get joystick name.
Synopsis

#include "SDL.h"
const char * SDL_JoystickName (int index);

Description

Get the implementation dependent name of joystick.ifidex parameter refers to the N'th
joystick on the system.

Return Value

Returns a char pointer to the joystick name.

Examples

/* Print the names of all attached joysticks */
int num_joy, i;
num_joy=SDL_NumJoysticks();
printf("%d joysticks found\n", num_joy);
for(i=0;i<num_joy;i++)

printf("%s\n", SDL_JoystickName(i);

See Also

SDL_JoystickOpen

183

SDL_JoystickOpen

Name
SDL_JoystickOpen — Opens a joystick for use.

Synopsis

#include "SDL.h"
SDL_Joystick * SDL_JoystickOpen (int index);

Description

Opens a joystick for use within SDL. Tliedex refers to the N'th joystick in the system. A
joystick must be opened before it game be used.

Return Value

Returns a SDL_Joystick structure on success. NULL on failure.

Examples

SDL_Joystick *joy;

/I Check for joystick

if(SDL_NumJoysticks()>0){
/I Open joystick
joy=SDL_JoystickOpen(0);

if(joy)

{
printf("Opened Joystick 0\n");
printf("Name: %s\n", SDL_JoystickName(0));
printf("Number of Axes: %s\n", SDL_JoystickNumAxes(joy));
printf("Number of Buttons: %s\n", SDL_JoystickNumButtons(joy));
printf("Number of Balls: %s\n", SDL_JoystickNumBalls(joy));

}

else
printf("Couldn’t open Joystick 0\n");

184

/I Close if opened
if(SDL_JoystickOpened(0))
SDL_JoystickClose(joy);

See Also

SDL_JoystickClose

SDL_JoystickOpen

185

SDL_JoystickOpened

Name

SDL_JoystickOpened — Determine if a joystick has been opened
Synopsis
#include "SDL.h"

int SDL_JoystickOpened (int index);

Description

Determines whether a joystick has already been opened within the appli¢atier. refers to the
N’th joystick on the system.

Return Value

Returns 1 if the joystick has been opened, or 0 if it has not.

See Also

SDL_JoystickOpen , SDL_JoystickClose

186

SDL_Joystickindex

Name
SDL_Joystickindex — Get the index of an SDL_Joystick.

Synopsis

#include "SDL.h"
int SDL_Joystickindex (SDL_Joystick *joystick);

Description

Returns the index of a given SDL_Joystick structure.

Return Value

Index number of the joystick.

See Also

SDL_JoystickOpen

187

SDL_JoystickNumAXxes

Name

SDL_JoystickNumAxes — Get the number of joystick axes
Synopsis

#include "SDL.h"
int SDL_JoystickNumAxes (SDL_Joystick *joystick);

Description

Return the number of axes available from a previously opened SDL_Joystick.

Return Value

Number of axes.

See Also

SDL_JoystickGetAxis , SDL_JoystickOpen

188

SDL_JoystickNumBalls

Name

SDL_JoystickNumBalls — Get the number of joystick trackballs
Synopsis

#include "SDL.h"
int SDL_JoystickNumBalls (SDL_Joystick *joystick);

Description

Return the number of trackballs available from a previously opened SDL_Joystick.

Return Value

Number of trackballs.

See Also

SDL_JoystickGetBall , SDL_JoystickOpen

189

SDL_JoystickNumHats

Name

SDL_JoystickNumHats — Get the number of joystick hats
Synopsis

#include "SDL.h"
int SDL_JoystickNumHats (SDL_Joystick *joystick);

Description

Return the number of hats available from a previously opened SDL_Joystick.

Return Value

Number of hats.

See Also

SDL_JoystickGetHat , SDL_JoystickOpen

190

SDL_JoystickNumButtons

Name

SDL_JoystickNumButtons — Get the number of joysitck buttons
Synopsis

#include "SDL.h"
int SDL_JoystickNumButtons (SDL_Joystick *joystick);

Description

Return the number of buttons available from a previously opened SDL_Joystick.

Return Value

Number of buttons.

See Also

SDL_JoystickGetButton , SDL_JoystickOpen

191

SDL_JoystickUpdate

Name

SDL_JoystickUpdate = — Updates the state of all joysticks
Synopsis
#include "SDL.h"

void SDL_JoystickUpdate (void);

Description

Updates the state(position, buttons, etc.) of all open joysticks. If joystick events have been enabled
with SDL_JoystickEventState then this is called automatically in the event loop.

See Also

SDL_JoystickEventState

192

SDL_JoystickGetAxis

Name

SDL_JoystickGetAxis — Get the current state of an axis
Synopsis

#include "SDL.h"
Sintl6 SDL_JoystickGetAxis (SDL_Joystick *joystick, int axis);

Description

SDL_JoystickGetAxis returns the current state of the givexis on the giverjoystick

On most modern joysticks the X axis is usually representeaidyy O and the Y axis byxis 1.

The value returned bgDL_JoystickGetAxis is a signed integer (-32768 to 32768) representing
the current position of thaxis , it maybe necessary to impose certain tolerances on these values to
account for jitter. It is worth noting that some joysticks use axes 2 and 3 for extra buttons.

Return Value

Returns a 16-bit signed integer representing the current position akibe.

Examples

Sintl6 x_move, y_move;
SDL_Joystick *joy1;

x_move=SDL_JoystickGetAxis(joyl, 0);
y_move=SDL_JoystickGetAxis(joyl, 1);

193

SDL_JoystickGetAxis

See Also

SDL_JoystickNumAxes

194

SDL_JoystickGetHat

Name

SDL_JoystickGetHat =~ — Get the current state of a joystick hat
Synopsis

#include "SDL.h"
Uint8 SDL_JoystickGetHat (SDL_Joystick *joystick, int hat);

Description

SDL_JoystickGetHat returns the current state of the ghatn on the giverjoystick

Return Value

The current state is returned as a Uint8 which is defined as an OR’'d combination of one or more of
the following

SDL_HAT_CENTERED
SDL_HAT_UP
SDL_HAT_RIGHT
SDL_HAT_DOWN
SDL_HAT_LEFT
SDL_HAT_RIGHTUP
SDL_HAT_RIGHTDOWN
SDL_HAT_LEFTUP
SDL_HAT_LEFTDOWN

See Also

SDL_JoystickNumHats

195

SDL_JoystickGetButton

Name

SDL_JoystickGetButton — Get the current state of a given button on a given joystick
Synopsis

#include "SDL.h"
Uint8 SDL_JoystickGetButton (SDL_Joystick *joystick, int button);

Description
SDL_JoystickGetButton returns the current state of the givgton on the giverjoystick

Return Value

1 if the button is pressed. Otherwise, O.

See Also

SDL_JoystickNumButtons

196

SDL_JoystickGetBall

Name

SDL_JoystickGetBall — Get relative trackball motion
Synopsis

#include "SDL.h"
int SDL_JoystickGetBall (SDL_Joystick *joystick, int ball, int *dx, int
“dy);

Description

Get theball axis change.

Trackballs can only return relative motion since the last caiid_JoystickGetBall , these
motion deltas a placed intix anddy .

Return Value

Returns 0 on success or -1 on failure

Examples

int delta_x, delta_y;
SDL_Joystick *joy;

SDL_JoystickUpdate();

if(SDL_JoystickGetBall(joy, 0, &delta_x, &delta_y)==-1)
printf("TrackBall Read Errorl\n");

printf("Trackball Delta- X:%d, Y:%d\n", delta_x, delta_y);

197

SDL_JoystickGetBall

See Also

SDL_JoystickNumBalls

198

SDL_JoystickClose

Name

SDL_JoystickClose =~ — Closes a previously opened joystick
Synopsis

#include "SDL.h"
void SDL_JoystickClose (SDL_Joystick *joystick);

Description

Close goystick that was previously opened wiDL_JoystickOpen

See Also

SDL_JoystickOpen , SDL_JoystickOpened

199

Chapter 10. Audio

Sound on the computer is translated from waves that you hear into a series of values, or samples,
each representing the amplitude of the wave. When these samples are sent in a stream to a sound
card, an approximation of the original wave can be recreated. The more bits used to represent the
amplitude, and the greater frequency these samples are gathered, the closer the approximated sound
is to the original, and the better the quality of sound.

This library supports both 8 and 16 bit signed and unsigned sound samples, at frequencies ranging
from 11025 Hz to 44100 Hz, depending on the underlying hardware. If the hardware doesn’t support
the desired audio format or frequency, it can be emulated if desiredS{@eepenAudio())

A commonly supported audio format is 16 bits per sample at 22050 Hz.

SDL_AudioSpec

Name
SDL_AudioSpec — Audio Specification Structure

Structure Definition

typedef struct{
int freq;
Uintl6 format;
Uint8 channels;
Uint8 silence;
Uintlé samples;
Uint32 size;
void (*callback)(void *userdata, Uint8 *stream, int len);
void *userdata;
} SDL_AudioSpec;

Structure Data

freq Audio frequency in samples per second
format Audio data format

channels Number of channels: 1 mono, 2 stereo
silence Audio buffer silence value (calculated)
samples Audio buffer size in samples

200

SDL_AudioSpec

size Audio buffer size in bytes (calculated)
callback(..) Callback function for filling the audio buffer
userdata Pointer the user data which is passed to the

callback function

Description

The SDL_AudioSpec structure is used to describe the format of some audio data. This structure is
used bySDL_OpenAudio andSDL_LoadWAVY While all fields are used bgDL_OpenAudio only

freq ,format ,samples andchannels are used bysDL_LoadWAV We will detail these

common members here.

freq The number of samples sent to the sound device
every second. Common values are 11025, 22050
and 44100. The higher the better.

201

format

channels

SDL_AudioSpec

Specifies the size and type of each sample
elementaUDIO_US8
Unsigned 8-bit samples
AUDIO_S8
Signed 8-bit samples
AUDIO_U1l160r AUDIO_U16LSB
Unsigned 16-bit little-endian samples
AUDIO_S16 or AUDIO_S16LSB
Signed 16-bit little-endian samples
AUDIO_U16MSB
Unsigned 16-bit big-endian samples
AUDIO_S16MSB
Signed 16-bit big-endian samples
AUDIO_U16SYS
EitherAUDIO_U16LSBor
AUDIO_U16MSHElepending on you systems
endianness
AUDIO_S16SYS
EitherAUDIO_S16LSBor

AUDIO_S16MSBdepending on you systems
endianness

The number of seperate sound channels. 1 is
mono (single channel), 2 is stereo (dual channel).

202

samples

See Also

SDL_OpenAudio , SDL_LoadWAV

SDL_AudioSpec

When used witlsDL_OpenAudio this refers to

the size of the audio buffer in samples. A sample a
chunk of audio data of the size specified in

format mulitplied by the number of channels.
When the SDL_AudioSpec is used with
SDL_LoadWAVsamples is set to 4096.

203

SDL_OpenAudio

Name

SDL_OpenAudio — Opens the audio device with the desired parameters.
Synopsis

#include "SDL.h"
int SDL_OpenAudio (SDL_AudioSpec *desired, SDL_AudioSpec *obtained);

Description

This function opens the audio device with thesired parameters, and returns 0 if successful,
placing the actual hardware parameters in the structure pointeddbtained . If obtained is

NULL, the audio data passed to the callback function will be guaranteed to be in the requested
format, and will be automatically converted to the hardware audio format if necessary. This function
returns -1 if it failed to open the audio device, or couldn’t set up the audio thread.

To open the audio devicedesired SDL_AudioSpeanust be created.

SDL_AudioSpec *desired,;

desired=(SDL_AudioSpec *)malloc(sizeof(SDL_AudioSpec));

You must then fill this structure with your desired audio specifications.

desired-freq

The desired audio frequency in samples-per-second.

desired-format
The desired audio format (s&DL_AudioSpetr

desired-samples

The desired size of the audio buffer in samples. This number should be a power of two, and
may be adjusted by the audio driver to a value more suitable for the hardware. Good values
seem to range between 512 and 8192 inclusive, depending on the application and CPU speed.
Smaller values yield faster response time, but can lead to underflow if the application is doing
heavy processing and cannot fill the audio buffer in time. A stereo sample consists of both right

204

SDL_OpenAudio

and left channels in LR ordering. Note that the number of samples is directly related to time by
the following formula: ms = (samples*1000)/freq

desired-zallback

This should be set to a function that will be called when the audio device is ready for more data.
It is passed a pointer to the audio buffer, and the length in bytes of the audio buffer. This
function usually runs in a separate thread, and so you should protect data structures that it
accesses by callingDL_LockAudio andSDL_UnlockAudio in your code. The callback

prototype is:

void callback(void *userdata, Uint8 *stream, int len);

userdata is the pointer stored inserdata field of the SDL_AudioSpecstream is a
pointer to the audio buffer you want to fill with information alesh is the length of the audio
buffer in bytes.

desired-zxiserdata
This pointer is passed as the first parameter taéieack function.

SDL_OpenAudio reads these fields from tliesired SDL_AudioSpec structure pass to the
function and attempts to find an audio configuration matching gesired . As mentioned above,
if the obtained parameter iZNULLthen SDL with convert from youtlesired audio settings to
the hardware settings as it plays.

If obtained isNULLthen thedesired SDL_AudioSpec is your working specification, otherwise
theobtained SDL_AudioSpec becomes the working specification andlésirec specification
can be deleted. The data in the working specification is used when building SDL_AudioCVT'’s for
converting loaded data to the hardware format.

SDL_OpenAudio calculates thasize andsilence fields for both thedesired andobtained
specifications. Theize field stores the total size of the audio buffer in bytes, whilesifence
stores the value used to represent silence in the audio buffer

The audio device starts out playisgence when it's opened, and should be enabled for playing
by callingSDL_PauseAudio (0) when you are ready for your audéallback function to be
called. Since the audio driver may modify the requesied of the audio buffer, you should
allocate any local mixing buffers after you open the audio device.

Examples

/* Prototype of our callback function */
void my_audio_callback(void *userdata, Uint8 *stream, int len);

/* Open the audio device */

SDL_AudioSpec *desired, *obtained;
SDL_AudioSpec *hardware_spec;

205

SDL_OpenAudio

/* Allocate a desired SDL_AudioSpec */
desired=(SDL_AudioSpec *)malloc(sizeof(SDL_AudioSpec));

/* Allocate space for the obtained SDL_AudioSpec */
obtained=(SDL_AudioSpec *)malloc(sizeof(SDL_AudioSpec));

/* 22050Hz - FM Radio quality */
desired->freq=22050;

/* 16-bit signed audio */
desired->format=AUDIO_S16LSB;

/* Large audio buffer reduces risk of dropouts but increases response time */
desired->samples=8192;

/* Our callback function */
desired->callback=my_audio_callback;

desired->userdata=NULL;

/* Open the audio device */

if (SDL_OpenAudio(desired, obtained) < 0){
fprintf(stderr, "Couldn’t open audio: %s\n", SDL_GetError());
exit(-1);

}

/* desired spec is no longer needed */

free(desired);

hardware_spec=obtained;

/* Prepare callback for playing */

[* Start playing */
SDL_PauseAudio(0);

See Also

SDL_AudioSpec , SDL_LockAudio , SDL_UnlockAudio , SDL_PauseAudio

206

SDL_PauseAudio

Name

SDL_PauseAudio — Pauses and unpauses the audio callback processing
Synopsis

#include "SDL.h"
void SDL_PauseAudio (int pause_on);

Description

This function pauses and unpauses the audio callback processing. It should be called with
pause_on =0 after opening the audio device to start playing sound. This is so you can safely
initialize data for your callback function after opening the audio device. Silence will be written to the
audio device during the pause.

See Also

SDL_GetAudioStatus , SDL_OpenAudio

207

SDL_GetAudioStatus

Name

SDL_GetAudioStatus — Get the current audio state
Synopsis

#include "SDL.h"
SDL_audiostatus SDL_GetAudioStatus (void);

Description

typedef enum{
SDL_AUDIO_STOPPED,
SDL_AUDIO_PAUSED,
SDL_AUDIO_PLAYING

} SDL_audiostatus;

Returns eitheBDL_AUDIO_STOPPEDSDL_AUDIO_PAUSEDr SDL_AUDIO_PLAYINGdepending on
the current audio state.

See Also

SDL_PauseAudio

208

SDL_LoadWAV

Name
SDL_LoadWAV— Load a WAVE file

Synopsis

#include "SDL.h"
SDL_AudioSpec * SDL_LoadWAV\const char *file, SDL_AudioSpec *spec, Uint8
**audio_buf, Uint32 *audio_len);

Description

SDL_LoadWAVThis function loads a WAVEile into memory.

If this function succeeds, it returns the givebL_AudioSpec , filled with the audio data format of
the wave data, and sasidio_buf to amalloc 'd buffer containing the audio data, and sets
audio_len to the length of that audio buffer, in bytes. You need to free the audio buffer with
SDL_FreeWAVwhen you are done with it.

This function returnélULL and sets the SDL error message if the wave file cannot be opened, uses
an unknown data format, or is corrupt. Currently raw, MS-ADPCM and IMA-ADPCM WAVE files
are supported.

Example

SDL_AudioSpec wav_spec;
Uint32 wav_length;
uint8 *wav_buffer;

/* Load the WAV */

if(SDL_LoadWAV("test.wav", &wav_spec, &wav_buffer, &wav_length) == NULL){
fprintf(stderr, "Could not open testwav: %s\n", SDL_GetError());
exit(-1);

}

/* Do stuff with the WAV */

209

SDL_LoadWAV

/* Free It */
SDL_FreeWAV(wav_buffer);

See Also

SDL_AudioSpecSDL_OpenAudio , SDL_FreeWAV

210

SDL_FreeWAV

Name
SDL_FreeWAV— Frees previously opened WAV data

Synopsis
#include "SDL.h"

void SDL_FreeWAMUint8 *audio_buf);

Description

After a WAVE file has been opened wiDL_LoadWAVits data can eventually be freed with
SDL_FreeWAV. audio_buf is a pointer to the buffer created BpL_LoadWAV

See Also

SDL_LoadWAV

211

SDL_AudioCVT

Name

SDL_AudioCVT — Audio Conversion Structure

Structure Definition

typedef struct{
int needed;
Uintlé src_format;
Uintl6 dest_format;
double rate_incr;
uint8 *buf;
int len;
int len_cvt;
int len_mult;
double len_ratio;

void (*ilters[10])(struct SDL_AudioCVT *cvt, Uintl6 format);

int filter_index;
} SDL_AudioCVT;

Structure Data

needed
src_format
dest_format
rate_incr
buf

len

len_cvt

len_mult

len_ratio
filters[10](..)
filter_index

Set to one if the conversion is possible
Audio format of the source

Audio format of the destination

Rate conversion increment

Audio buffer

Length of the original audio buffer in bytes

Length of converted audio buffer in bytes
(calculated)

buf mustbeden *len_mult bytesin

size(calculated)

Final audio size i¢en *len_ratio

Pointers to functions needed for this conversion
Current conversion function

212

SDL_AudioCVT

Description

The SDL_AudioCVT is used to convert audio data between different formats. A SDL_AudioCVT
structure is created with ti&DL_BuildAudioCVT function, while the actual conversion is done by
theSDL_ConvertAudio function.

Many of the fields in the SDL_AudioCVT structure should be considered private and their function
will not be discussed here.

Uint8 *buf

This points to the audio data that will be used in the conversion. It is both the source and the
destination, which means the converted audio data overwrites the original data. It also means
that the converted data may be larger than the original data (if you were converting from 8-bit to
16-bit, for instance), so you must ensimg is large enough. See below.

int len

This is the length of the original audio data in bytes.

int len_mult
As explained above, the audio buffer needs to be big enough to store the converted data, which
may be bigger than the original audio data. The lengthusf should bden *len_mult
doublelen_ratio

When you have finished converting your audio data, you need to know how much of your audio
buffer is valid.len *len_ratio s the size of the converted audio data in bytes. This is very
similar tolen_mult , however when the convert audio data is shorter than the original
len_mult would be 1len_ratio , on the other hand, would be a fractional number

between 0 and 1.

See Also

SDL_BuildAudioCVT , SDL_ConvertAudio , SDL_AudioSpec

213

SDL_BuildAudioCVT

Name

SDL_BuildAudioCVT — Initializes a SDL_AudioCVT structure for conversion
Synopsis

#include "SDL.h"

int SDL_BuildAudioCVT (SDL_AudioCVT *cvt, Uintl6 src_format, Uint8
src_channels, int src_rate, Uintl6 dst format, Uint8 dst_channels, int
dst_rate);

Description

Before anSDL_AudioCVT structure can be used to convert audio data it must be initialized with
source and destination information.

src_format anddst_format are the source and destination format of the conversion. (For
information on audio formats se8DL_AudioSpey. src_channels anddst_channels are

the number of channels in the source and destination formats. Fisrallyate anddst_rate

are the frequency or samples-per-second of the source and destination formats. Once again, see
SDL_AudioSpec

Return Values

Returns -1 if the filter could not be built or 1 if it could.

Examples

SeeSDL_ConvertAudio

See Also

SDL_ConvertAudio , SDL_AudioCVT

214

SDL_ConvertAudio

Name

SDL_ConvertAudio — Convert audio data to a desired audio format.
Synopsis

#include "SDL.h"
int SDL_ConvertAudio (SDL_AudioCVT *cwt);

Description

SDL_ConvertAudio takes one parametayt , which was previously initilized. Initilizing a
SDL_AudioCVTis a two step process. First of all, the structure must be passed to
SDL_BuildAudioCVT along with source and destination format parameters. Secondly, the

cvt->buf and cvt-den fields must be setup. cvtuf should point to the audio data and cuen

should be set to the length of the audio data in bytes. Remember, the length of the buffer pointed to
by buf show bden *len_mult bytes in length.

Once the SDL_AudioCVTstructure is initilized then we can pass#tb_ConvertAudio , which
will convert the audio data pointer to by cvbef . If SDL_ConvertAudio returned O then the
conversion was completed successfully, otherwise -1 is returned.

If the conversion completed successfully then the converted audio data can be read frdmfcvt->
The amount of valid, converted, audio data in the buffer is equal tolevt-3cvt ->len_ratio.

Examples

/* Converting some WAV data to hardware format */
void my_audio_callback(void *userdata, Uint8 *stream, int len);

SDL_AudioSpec *desired, *obtained;
SDL_AudioSpec wav_spec;
SDL_AudioCVT wav_cvt;

Uint32 wav_len;

uint8 *wav_buf;

int ret;

/* Allocated audio specs */
desired=(SDL_AudioSpec *)malloc(sizeof(SDL_AudioSpec));

215

SDL_ConvertAudio

obtained=(SDL_AudioSpec *)malloc(sizeof(SDL_AudioSpec));

/* Set desired format */
desired->freq=22050;
desired->format=AUDIO_S16LSB;
desired->samples=8192;
desired->callback=my_audio_callback;
desired->userdata=NULL;

/* Open the audio device */

if (SDL_OpenAudio(desired, obtained) < 0){
fprintf(stderr, "Couldn’t open audio: %s\n", SDL_GetError());
exit(-1);

}

free(desired);

/* Load the testwav */

if(SDL_LoadWAV("test.wav", &wav_spec, &wav_buf, &wav_len) == NULL){
fprintf(stderr, "Could not open testwav: %s\n", SDL_GetError());
SDL_CloseAudio();
free(obtained);
exit(-1);

}

/* Build AudioCVT */

ret = SDL_BuildAudioCVT(&wav_cvt,
wav_spec.format, wav_spec.channels, wav_spec.freq,
obtained->format, obtained->channels, obtained->freq);

/* Check that the convert was built */
if(ret==-1){
fprintf(stderr, "Couldn’t build converter\n");
SDL_CloseAudio();
free(obtained);
SDL_FreeWAV(wav_buf);

}

/* Setup for conversion */

wav_cvt.buf=(Uint8 *)malloc(wav_len*wav_cvt.len_mult);
wav_cvt.len=wav_len;

memcpy(wav_cvt.buf, wav_buf, wav_len);

/* We can delete to original WAV data now */
SDL_FreeWAV(wav_buf);

/* And now we're ready to convert */
SDL_ConvertAudio(&wav_cvt);

216

SDL_ConvertAudio

/* do whatever */

See Also

SDL_BuildAudioCVT , SDL_AudioCVT

217

SDL_MixAudio

Name
SDL_MixAudio — Mix audio data

Synopsis

#include "SDL.h"
void SDL_MixAudio (Uint8 *dst, Uint8 *src, Uint32 len, int volume);

Description

This function takes two audio buffers lein bytes each of the playing audio format and mixes them,
performing addition, volume adjustment, and overflow clipping. fbleme ranges from O to
SDL_MIX_MAXVvVOLUM&nd should be set to the maximum value for full audio volume. Note this does
not change hardware volume. This is provided for convenience -- you can mix your own audio data.

See Also

SDL_OpenAudio

218

SDL_LockAudio

Name

SDL_LockAudio — Lock out the callback function
Synopsis
#include "SDL.h"

void SDL_LockAudio (void);

Description

The lock manipulated by these functions protects the callback function. During a LockAudio period,
you can be guaranteed that the callback function is not running. Do not call these from the callback
function or you will cause deadlock.

See Also

SDL_OpenAudio

219

SDL_UnlockAudio

Name

SDL_UnlockAudio — Unlock the callback function
Synopsis

#include "SDL.h"
void SDL_UnlockAudio (void);

Description

Unlocks a previousDL_LockAudio call.

See Also

SDL_OpenAudio

220

SDL_CloseAudio

Name

SDL_CloseAudio — Shuts down audio processing and closes the audio device.
Synopsis

#include "SDL.h"
void SDL_CloseAudio (void);

Description

This function shuts down audio processing and closes the audio device.

See Also

SDL_OpenAudio

221

Chapter 11. CD-ROM

SDL supports audio control of up to 32 local CD-ROM drives at once.

You use this API to perform all the basic functions of a CD player, including listing the tracks,
playing, stopping, and ejecting the CD-ROM. (Currently, multi-changer CD drives are not
supported.)

Before you call any of the SDL CD-ROM functions, you must first call
"SDL_Init(SDL_INIT_CDROM) ", which scans the system for CD-ROM drives, and sets the
program up for audio control. Check the return code, which should be 0, to see if there were any
errors in starting up.

After you have initialized the library, you can find out how many drives are available using the
SDL_CDNumbDrives() function. The first drive listed is the system default CD-ROM drive. After
you have chosen a drive, and have opened it ®ith_CDOpen(), you can check the status and start
playing if there’s a CD in the drive.

A CD-ROM is organized into one or more tracks, each consisting of a certain number of "frames".
Each frame is ~2K in size, and at normal playing speed, a CD plays 75 frames per second. SDL
works with the number of frames on a CD, but this can easily be converted to the more familiar
minutes/seconds format by using tFRAMES_TO_MSF(ymacro.

SDL_CDNumbDrives

Name

SDL_CDNumDrives — Returns the number of CD-ROM drives on the system.
Synopsis

#include "SDL.h"
int SDL_CDNumDrives (void);

Description

Returns the number of CD-ROM drives on the system.

222

SDL_CDNumbDrives

See Also

SDL_CDOpen

223

SDL_CDName

Name

SDL_CDName— Returns a human-readable, system-dependent identifier for the CD-ROM.
Synopsis

#include "SDL.h"
const char * SDL_CDNamént drive);

Description

Returns a human-readable, system-dependent identifier for the CD-8@#!. is the index of the
drive. Drive indices start to 0 and end%bL_CDNumbDrives() -1.

Examples

- "/dev/cdrom"
g
- "/dev/disk/ide/1/master"

See Also

SDL_CDNumDrives

224

SDL_CDOpen

Name
SDL_CDOpen— Opens a CD-ROM drive for access.

Synopsis

#include "SDL.h"
SDL_CD *SDL_CDOpettint drive);

Description

Opens a CD-ROM drive for access. It returnS@L_CDstructure on success, RULLif the drive
was invalid or busy. This newly opened CD-ROM becomes the default CD used when other CD
functions are passedNULL CD-ROM handle.

Drives are numbered starting with 0. Drive 0 is the system default CD-ROM.

Examples

SDL_CD *cdrom;

int cur_track;

int min, sec, frame;
SDL_Init(SDL_INIT_CDROM);
atexit(SDL_Quit);

/* Check for CD drives */
if(ISDL_CDNumDrives(){
/* None found */
fprintf(stderr, "No CDROM devices available\n");
exit(-1);
}

/* Open the default drive */
cdrom=SDL_CDOpen(0);

/* Did if open? Check if cdrom is NULL */

if(lcdrom){
fprintf(stderr, "Couldn’t open drive: %s\n", SDL_GetError());
exit(-1);

225

SDL_CDOpen

}

/* Print Volume info */

printf("Name: %s\n", SDL_CDName(0));

printf("Tracks: %d\n", cdrom->numtracks);

for(cur_track=0;cur_track < cdrom->numtracks; cur_track++){
FRAMES_TO_MSF(cdrom->track[cur_track].length, &min, &sec, &frame);
printf("\tTrack %d: Length %d:%d\n", cur_track, min, sec);

}

SDL_CDClose(cdrom);

See Also
SDL_CD, SDL_CDtrack SDL_CDClose

226

SDL_CDStatus

Name

SDL_CDStatus — Returns the current status of the given drive.
Synopsis

#include "SDL.h"

CDstatus SDL_CDStatus (SDL_CD *cdrom);

/* Given a status, returns true if there’s a disk in the drive */
#define CD_INDRIVE(status) ((int)status > 0)

Description

This function returns the current status of the given drive. Status is described like so:

typedef enum {
CD_TRAYEMPTY,
CD_STOPPED,
CD_PLAYING,
CD_PAUSED,
CD_ERROR = -1
} CbDstatus;

If the drive has a CD in it, the table of contents of the CD and current play position of the CD will be
stored in the SDL_CD structure.

The macraCD_INDRIVE is provided for convenience, and given a status returns true if there’s a disk
in the drive.

Note: SDL_CDStatus also updates the SDL_CD structure passed to it.

Example

int playTrack(int track)
{

227

SDL_CDStatus

int playing = 0;

if (CD_INDRIVE(SDL_CDStatus(cdrom))) {
/* clamp to the actual number of tracks on the CD */
if (track >= cdrom->numtracks) {
track = cdrom->numtracks-1;

}

if (SDL_CDPlayTracks(cdrom, track, 0, 1, 0) == 0) {
playing = 1;
}
}

return playing;

See Also

SDL_CD

228

SDL_CDPlay

Name
SDL_CDPlay — Play a CD

Synopsis

#include "SDL.h"
int SDL_CDPlay(SDL_CD *cdrom, int start, int length);

Description

Plays the givertdrom , starting a frametart for length frames.

Return Values

Returns 0 on success, or -1 on an error.

See Also

SDL_CDPlayTracks , SDL_CDStop

229

SDL_CDPlayTracks

Name
SDL_CDPlayTracks — Play the given CD track(s)

Synopsis

#include "SDL.h"
int SDL_CDPlayTracks (SDL_CD *cdrom, int start_track, int start_frame, int
ntracks, int nframes));

Description
SDL_CDPlayTracks plays the given CD starting at traskart_track , for ntracks tracks.
start_frame is the frame offset, from the beginning of thtart_track , at which to start.

nframes is the frame offset, from the beginning of the last trasta(t_track +ntracks), at
which to end playing.

SDL_CDPlayTracks should only be called after callirf§pL_CDStatus to get track information
about the CD.

Note: Data tracks are ignored.

Return Value

Returns 0, or -1 if there was an error.

Examples

/* assuming cdrom is a previously opened device */

/* Play the entire CD */

if(CD_INDRIVE(SDL_CDStatus(cdrom)))
SDL_CDPlayTracks(cdrom, 0, 0, 0, 0);

/* Play the first track */

230

if(CD_INDRIVE(SDL_CDStatus(cdrom)))
SDL_CDPlayTracks(cdrom, 0, 0, 1, 0);

/* Play first 15 seconds of the 2nd track */

if(CD_INDRIVE(SDL_CDStatus(cdrom)))
SDL_CDPlayTracks(cdrom, 1, 0, 0, CD_FPS*15);

See Also

SDL_CDPlay, SDL_CDStatus , SDL_CD

SDL_CDPIlayTracks

231

SDL_CDPause

Name
SDL_CDPause— Pauses a CDROM

Synopsis

#include "SDL.h"
int SDL_CDPausgSDL_CD *cdrom);

Description

Pauses play on the givexrom .

Return Value

Returns 0 on success, or -1 on an error.

See Also

SDL_CDPlay, SDL_CDResume

232

SDL_CDResume

Name
SDL_CDResume— Resumes a CDROM

Synopsis

#include "SDL.h"
int SDL_CDResuméSDL_CD *cdrom);

Description

Resumes play on the givexlrom .

Return Value

Returns 0 on success, or -1 on an error.

See Also

SDL_CDPlay, SDL_CDPause

233

SDL_CDStop

Name
SDL_CDStop — Stops a CDROM

Synopsis

#include "SDL.h"
int SDL_CDStop(SDL_CD *cdrom);

Description
Stops play on the givecdrom .

Return Value

Returns 0 on success, or -1 on an error.

See Also

SDL_CDPlay,

234

SDL_CDEject

Name
SDL_CDEject — Ejects a CDROM

Synopsis

#include "SDL.h"
int SDL_CDEject (SDL_CD *cdrom);

Description

Ejects the givertdrom .

Return Value

Returns 0 on success, or -1 on an error.

See Also
SDL_CD

235

SDL_CDClose

Name
SDL_CDClose — Closes a SDL_CD handle

Synopsis

#include "SDL.h"
void SDL_CDClose(SDL_CD *cdrom);

Description

Closes the givendrom handle.

See Also

SDL_CDOpen SDL_CD

236

SDL_CD

Name
SDL_CD— CDROM Drive Information

Structure Definition

typedef struct{

int id;

CDstatus status;

int numtracks;

int cur_track;

int cur_frame;

SDL_CDtrack track[SDL_MAX_TRACKS+1];
} SDL_CD;

Structure Data

id Private drive identifier

status Drive status

numtracks Number of tracks on the CD

cur_track Current track

cur_frame Current frame offset within the track

track [SDL_MAX_TRACKS+1] Array of track descriptions. (s&DL_CDtracR
Description

An SDL_CD structure is returned ISDL_CDOpen It represents an opened CDROM device and
stores information on the layout of the tracks on the disc.

A frame is the base data unit of a COD_FPSframes is equal to 1 second of music. SDL provides
two macros for converting between time and fran®8AMES_TO_MSF(f, M,S,F) and
MSF_TO FRAMES

Examples

int min, sec, frame;
int frame_offset;

237

SDL_CD

FRAMES_TO_MSF(cdrom->cur_frame, &min, &sec, &frame);
printf("Current Position: %d minutes, %d seconds, %d frames\n", min, sec, frame);

frame_offset=MSF_TO_FRAMES(min, sec, frame);

See Also
SDL_CDOpen SDL_CDtrack

238

SDL_CDtrack

Name

SDL_CDtrack — CD Track Information Structure

Structure Definition

typedef struct{
uint8 id;
uint8 type;
Uint32 length;
Uint32 offset;

} SDL_CDtrack;

Structure Data

id Track number (0-99)

type SDL_AUDIO_TRACHKr SDL_DATA_TRACK
length Length, in frames, of this track

offset Frame offset to the beginning of this track
Description

SDL_CDtrack stores data on each track on a CD, its fields should be pretty self explainatory. It is a
member a th&DL_CDstructure.

Note: Frames can be converted to standard timings. There are CD_FPSframes per second, so
SDL_CDtrack.length /CD_FPS=length_in_seconds.

See Also
SDL_CD

239

Chapter 12. Multi-threaded Programming

SDL provides functions for creating threads, mutexes, semphores and condition variables.

In general, you must be very aware of concurrency and data integrity issues when writing
multi-threaded programs. Some good guidelines include:

- Don't call SDL video/event functions from separate threads

- Don't use any library functions in separate threads

- Don't perform any memory management in separate threads

« Lock global variables which may be accessed by multiple threads

- Never terminate threads, always set a flag and wait for them to quit

- Think very carefully about all possible ways your code may interact

Note: SDLs threading is not implemented on MacOS, due to that lack of preemptive thread
support (eck!)

SDL_CreateThread

Name

SDL_CreateThread — Creates a new thread of execution that shares its parent’s properties.

Synopsis

#include "SDL.h"
#include "SDL_thread.h"
SDL_Thread * SDL_CreateThread (int (*fn)(void *), void *data);

240

SDL_CreateThread

Description

SDL_CreateThread creates a new thread of execution that shares all of its parent’s global memory,
signal handlers, file descriptors, etc, and runs the fundtiopassed the void pointelata The
thread quits when this function returns.

See Also

SDL_KillThread

241

SDL_ThreadID

Name

SDL_ThreadlID — Get the 32-bit thread identifier for the current thread.
Synopsis

#include "SDL.h"
#include "SDL thread.h"
Uint32 SDL_ThreadID (void);

Description

Get the 32-bit thread identifier for the current thread.

242

SDL_GetThreadlD

Name
SDL_GetThreadlD — Getthe SDL thread ID of a SDL_Thread

Synopsis

#include "SDL.h"
#include "SDL thread.h"
Uint32 SDL_GetThreadID (SDL_Thread *thread);

Description
Returns the ID of a SDL_Thread created®YL_CreateThread

See Also
SDL_CreateThread

243

SDL_WaitThread

Name
SDL_WaitThread — Wait for a thread to finish.

Synopsis

#include "SDL.h"
#include "SDL thread.h"
void SDL_WaitThread (SDL_Thread *thread, int *status);

Description

Wait for a thread to finish (timeouts are not supported).

Return Value

The return code for the thread function is placed in the area pointeddtahys , if status is
not NULL.

See Also

SDL_CreateThread

244

SDL_KillThread

Name

SDL_KillThread — Gracelessly terminates the thread.
Synopsis

#include "SDL.h"
#include "SDL thread.h"
void SDL_KillThread (SDL_Thread *thread);

Description

SDL_KillThread gracelessly terminates the thread associatedtivittad . If possible, you
should use some other form of IPC to signal the thread to quit.

See Also

SDL_CreateThread , SDL_WaitThread

245

SDL_CreateMutex

Name

SDL_CreateMutex — Create a mutex
Synopsis

#include "SDL.h"
#include "SDL thread.h"
SDL_mutex * SDL_CreateMutex (void);

Description

Create a new, unlocked mutex.

Examples

SDL_mutex *mut;

mut=SDL_CreateMutex();

if(SDL_mutexP(mut)==-1){
fprintf(stderr, "Couldn’t lock mutex\n");
exit(-1);

}

/* Do stuff while mutex is locked */

if(SDL_mutexV(mut)==-1)}{
fprintf(stderr, "Couldn’t unlock mutex\n");
exit(-1);

}

SDL_DestroyMutex(mut);

246

SDL_CreateMutex

See Also

SDL_mutexP, SDL_mutexV, SDL_DestroyMutex

247

SDL_DestroyMutex

Name

SDL_DestroyMutex — Destroy a mutex
Synopsis

#include "SDL.h"
#include "SDL thread.h"
void SDL_DestroyMutex (SDL_mutex *mutex);

Description

Destroy a previouslgreatednutex.

See Also

SDL_CreateMutex

248

SDL_mutexP

Name

SDL_mutexP — Lock a mutex
Synopsis

#include "SDL.h"
#include "SDL thread.h"
int SDL_mutexP (SDL_mutex *mutex);

Description

Locks themutex , which was previously created wiBDL_CreateMutex . If the mutex is already
locked thersDL_mutexP will not return until it isunlocked Returns 0 on success, or -1 on an error.

SDL also defines a macHalefine SDL_LockMutex(m) SDL_mutexP(m)

See Also

SDL_CreateMutex , SDL_mutexV

249

SDL_mutexV

Name

SDL_mutexV — Unlock a mutex
Synopsis

#include "SDL.h"
#include "SDL thread.h"
int SDL_mutexV (SDL_mutex *mutex);

Description

Unlocks themutex , which was previously created wiBDL_CreateMutex . Returns 0 on success,
or -1 onan error.

SDL also defines a macHalefine SDL_UnlockMutex(m) SDL_mutexV(m)

See Also

SDL_CreateMutex , SDL_mutexP

250

SDL_CreateSemaphore

Name

SDL_CreateSemaphore — Creates a new semaphore and assigns an initial value to it.
Synopsis

#include "SDL.h"
#include "SDL thread.h"
SDL_sem *SDL_CreateSemaphore (Uint32 initial_value);

Description

SDL_CreateSemaphore() creates a new semaphore and initializes it with the value

initial_value . Each locking operation on the semaphoreSi3L._ SemWaitSDL_SemTryWait

or SDL_SemWaitTimeouwill atomically decrement the semaphore value. The locking operation

will be blocked if the semaphore value is not positive (greater than zero). Each unlock operation by
SDL_SemPoswill atomically increment the semaphore value.

Return Value

Returns a pointer to an initialized semaphore or NULL if there was an error.

Examples

SDL_sem *my_sem;
my_sem = SDL_CreateSemaphore(INITIAL_SEM_VALUE);
if (my_sem == NULL) {

return CREATE_SEM_FAILED;
}

251

SDL_CreateSemaphore

See Also

SDL_DestroySemaphore , SDL_SemWait, SDL_SemTryWait , SDL_SemWaitTimeout
SDL_SemPost, SDL_SemValue

252

SDL_DestroySemaphore

Name

SDL_DestroySemaphore — Destroys a semaphore that was create&by. CreateSemaphare
Synopsis

#include "SDL.h"
#include "SDL thread.h"
void SDL_DestroySemaphore (SDL_sem *sem);

Description

SDL_DestroySemaphore destroys the semaphore pointed todeyn that was created by
SDL_CreateSemaphore . It is not safe to destroy a semaphore if there are threads currently blocked
waiting on it.

Examples

if (my_sem != NULL) {
SDL_DestroySemaphore(my_sem);
my_sem = NULL;

See Also

SDL_CreateSemaphore , SDL_SemWait, SDL_SemTryWait , SDL_SemWaitTimeout ,
SDL_SemPost, SDL_SemValue

253

SDL_SemWait

Name

SDL_SemWait — Lock a semaphore and suspend the thread if the semaphore value is zero.
Synopsis

#include "SDL.h"
#include "SDL thread.h"
int SDL_SemWait(SDL_sem *sem);

Description

SDL_SemWait() suspends the calling thread until either the semaphore pointedserbyas a
positive value, the call is interrupted by a signal or error. If the call is successful it will atomically
decrement the semaphore value.

After SDL_SemWwait() is successful, the semaphore can be released and its count atomically
incremented by a successful call3®L_SemPost

Return Value

Returns 0 if successful or -1 if there was an error (leaving the semaphore unchanged).

Examples

if (SDL_SemWait(my_sem) == -1) {
return WAIT_FAILED,;
t

SDL_SemPost(my_sem);

254

SDL_SemWait

See Also

SDL_CreateSemaphore , SDL_DestroySemaphore , SDL_SemTryWait , SDL_SemWaitTimeout ,
SDL_SemPost, SDL_SemValue

255

SDL_SemTryWait

Name

SDL_SemTryWait — Attempt to lock a semaphore but don’t suspend the thread.
Synopsis

#include "SDL.h"
#include "SDL thread.h"
int SDL_SemTryWait (SDL_sem *sem);

Description

SDL_SemTryWait is a non-blocking varient asDL_SemWait. If the value of the semaphore pointed
to by semis positive it will atomically decrement the semaphore value and return 0, otherwise it will
return SDL_MUTEX_TIMEOUT instead of suspending the thread.

After SDL_SemTryWait is successful, the semaphore can be released and its count atomically
incremented by a successful call3®L_SemPost

Return Value

Returns 0 if the semaphore was successfully locked or either SDL_MUTEX_TIMEOUT or -1 if the
thread would have suspended or there was an error, respectivly.

If the semaphore was not successfully locked, the semaphore will be unchanged.

Examples

res = SDL_SemTryWait(my_sem);

if (res == SDL_MUTEX_TIMEOUT) {
return TRY_AGAIN;

}

if (res == -1) {
return WAIT_ERROR;

}

256

SDL_SemTryWait

SDL_SemPost(my_sem);

See Also

SDL_CreateSemaphore , SDL_DestroySemaphore , SDL_SemWait, SDL_SemWaitTimeout ,
SDL_SemPost, SDL_SemValue

257

SDL_SemWaitTimeout

Name

SDL_SemWaitTimeout — Lock a semaphore, but only wait up to a specified maximum time.
Synopsis

#include "SDL.h"
#include "SDL thread.h"
int SDL_SemWaitTimeout (SDL_sem *sem, Uint32 timeout);

Description

SDL_SemWaitTimeout() is a varient ofSDL_SemWaiwith a maximum timeout value. If the

value of the semaphore pointed to$sm is positive (greater than zero) it will atomically decrement
the semaphore value and return 0, otherwise it will wait uinbieout milliseconds trying to lock

the semaphore. This function is to be avoided if possible since on some platforms it is implemented
by polling the semaphore every millisecond in a busy loop.

After SDL_SemWaitTimeout() is successful, the semaphore can be released and its count
atomically incremented by a successful calBioL_SemPost

Return Value

Returns 0 if the semaphore was successfully locked or either SDL_MUTEX_TIMEOUT or -1 if the
timeout period was exceeded or there was an error, respectivly.

If the semaphore was not successfully locked, the semaphore will be unchanged.

Examples

res = SDL_SemWaitTimeout(my_sem, WAIT_TIMEOUT_MILLISEC);

if (res == SDL_MUTEX_TIMEOUT) {
return TRY_AGAIN;

}

if (res == -1) {
return WAIT_ERROR;

258

SDL_SemWaitTimeout

SDL_SemPost(my_sem);

See Also

SDL_CreateSemaphore , SDL_DestroySemaphore , SDL_SemWait, SDL_SemTryWait ,
SDL_SemPost, SDL_SemValue

259

SDL_SemPost

Name

SDL_SemPost — Unlock a semaphore.
Synopsis

#include "SDL.h"
#include "SDL thread.h"
int SDL_SemPost(SDL_sem *sem);

Description

SDL_SemPost unlocks the semaphore pointed togsm and atomically increments the semaphores
value. Threads that were blocking on the semaphore may be scheduled after this call succeeds.

SDL_SemPost should be called after a semaphore is locked by a successful GillltoSemWait
SDL_SemTryWaibr SDL_SemWaitTimeout

Return Value

Returns 0 if successful or -1 if there was an error (leaving the semaphore unchanged).

Examples

SDL_SemPost(my_sem);

See Also

SDL_CreateSemaphore , SDL_DestroySemaphore , SDL_SemWait, SDL_SemTryWait ,
SDL_SemWaitTimeout , SDL_SemValue

260

SDL_SemValue

Name

SDL_SemValue — Return the current value of a semaphore.
Synopsis

#include "SDL.h"
#include "SDL/SDL _thread.h"
Uint32 SDL_SemValue(SDL_sem *sem);

Description

SDL_SemValue() returns the current semaphore value from the semaphore pointecséarby

Return Value

Returns current value of the semaphore.

Examples

sem_value = SDL_SemValue(my_sem);

See Also

SDL_CreateSemaphore , SDL_DestroySemaphore , SDL_SemWait, SDL_SemTryWait ,
SDL_SemWaitTimeout , SDL_SemPost

261

SDL_CreateCond

Name

SDL_CreateCond — Create a condition variable

Synopsis

#include "SDL.h"
#include "SDL thread.h"
SDL_cond * SDL_CreateCond (void);

Description

Creates a condition variable.

Examples

SDL_cond *cond;

cond=SDL_CreateCond();

/* Do stuff */

SDL_DestroyCond(cond);

See Also

SDL_DestroyCond , SDL_CondWait , SDL_CondSignal

262

SDL_DestroyCond

Name

SDL_DestroyCond — Destroy a condition variable
Synopsis

#include "SDL.h"
#include "SDL thread.h"
void SDL_DestroyCond (SDL_cond *cond);

Description

Destroys a condition variable.

See Also

SDL_CreateCond

263

SDL_CondSignal

Name

SDL_CondSignal — Restart a thread wait on a condition variable

Synopsis

#include "SDL.h"
#include "SDL thread.h"
int SDL_CondSignal (SDL_cond *cond);

Description

Restart one of the threads that are waiting on the condition variedme, . Returns 0 on success of
-1 on an error.

See Also

SDL_CondWait , SDL_CondBroadcast

264

SDL_CondBroadcast

Name

SDL_CondBroadcast — Restart all threads waiting on a condition variable

Synopsis

#include "SDL.h"
#include "SDL thread.h"
int SDL_CondBroadcast (SDL_cond *cond);

Description

Restarts all threads that are waiting on the condition variabled . Returns 0 on success, or -1 on
an error.

See Also

SDL_CondSignal , SDL_CondWait

265

SDL_CondWait

Name

SDL_CondWait — Wait on a condition variable
Synopsis

#include "SDL.h"
#include "SDL thread.h"
int SDL_CondWait (SDL_cond *cond, SDL_mutex *mut);

Description

Wait on the condition variableond and unlock the provided mutex. The mutex must the locked
before entering this function. Returns 0 when it is signalled, or -1 on an error.

See Also

SDL_CondWaitTimeout , SDL_CondSignal , SDL_mutexP

266

SDL_CondWaitTimeout

Name

SDL_CondWaitTimeout — Wait on a condition variable, with timeout
Synopsis

#include "SDL.h"
#include "SDL thread.h"
int SDL_CondWaitTimeout (SDL_cond *cond, SDL_mutex *mutex, Uint32 ms);

Description

Wait on the condition variableond for, at mostms millisecondsmut is unlocked so it must be
locked when the function is called. Retur®BL_MUTEX_TIMEDOUIif the condition is not signalled
in the allotted time, O if it was signalled or -1 on an error.

See Also

SDL_CondWait

267

Chapter 13. Time

SDL provides several cross-platform functions for dealing with time. It provides a way to get the
current time, a way to wait a little while, and a simple timer mechanism. These functions give you
two ways of moving an object every x milliseconds:

- Use atimer callback function. This may have the bad effect that it runs in a seperate thread or uses
alarm signals, but it's easier to implement.

- Oryou can get the number of milliseconds passed, and move the object if, for example, 30 ms
passed.

SDL_GetTicks

Name

SDL_GetTicks — Get the number of milliseconds since the SDL library initialization.

Synopsis
#include "SDL.h"

Uint32 SDL_GetTicks (void);

Description

Get the number of milliseconds since the SDL library initialization. Note that this value wraps if the
program runs for more than ~49 days.

See Also

SDL_Delay

268

SDL_Delay

Name

SDL_Delay — Wait a specified number of milliseconds before returning.
Synopsis

#include "SDL.h"
void SDL_Delay (Uint32 ms);

Description

Wait a specified number of milliseconds before returnBmL_Delay will wait at leastthe specified
time, but possible longer due to OS scheduling.

Note: Count on a delay granularity of at least 10 ms. Some platforms have shorter clock ticks
but this is the most common.

See Also

SDL_AddTimer

269

SDL_AddTimer

Name

SDL_AddTimer — Add a timer which will call a callback after the specified number of
milliseconds has elapsed.

Synopsis

#include "SDL.h"
SDL_TimerID SDL_AddTimer (Uint32 interval, SDL_NewTimerCallback callback,
void *param);

Callback

/* type definition for the "new" timer callback function */
typedef Uint32 (*SDL_NewTimerCallback)(Uint32 interval, void *param);

Description

Adds a callback function to be run after the specified number of milliseconds has elapsed. The
callback function is passed the current timer interval and the user supplied parameter from the
SDL_AddTimer call and returns the next timer interval. If the returned value from the callback is the
same as the one passed in, the periodic alarm continues, otherwise a new alarm is scheduled.

To cancel a currently running timer c&DL_RemoveTimewith the timer ID returned from
SDL_AddTimer .

The timer callback function may run in a different thread than your main program, and so shouldn't
call any functions from within itself. You may always c&DL_PushEventowever.

The granularity of the timer is platform-dependent, but you should count on it being at least 10 ms as
this is the most common number. This means that if you request a 16 ms timer, your callback will

run approximately 20 ms later on an unloaded system. If you wanted to set a flag signaling a frame
update at 30 frames per second (every 33 ms), you might set a timer for 30 ms (see example below).
If you use this function, you need to pa&BL_INIT_TIMER to SDL_Init.

270

SDL_AddTimer

Return Value

Returns an ID value for the added timer or NULL if there was an error.

Examples

my_timer_id = SDL_AddTimer((33/10)*10, my_callbackfunc, my_callback_param);

See Also

SDL_RemoveTimer, SDL_PushEvent

271

SDL_RemoveTimer

Name

SDL_RemoveTimer — Remove a timer which was added wiBibL_AddTimer
Synopsis

#include "SDL.h"
SDL_bool SDL_RemoveTimer (SDL_TimerID id);

Description

Removes a timer callback previously added v8L_AddTimer

Return Value

Returns a boolean value indicating success.

Examples

SDL_RemoveTimer(my_timer_id);

See Also

SDL_AddTimer

272

SDL_SetTimer

Name

SDL_SetTimer — Set a callback to run after the specified number of milliseconds has elapsed.
Synopsis

#include "SDL.h"
int SDL_SetTimer (Uint32 interval, SDL_TimerCallback callback);

Callback

/* Function prototype for the timer callback function */ typedef Uint32
(*SDL_TimerCallback)(Uint32 interval);

Description

Set a callback to run after the specified number of milliseconds has elapsed. The callback function is
passed the current timer interval and returns the next timer interval. If the returned value is the same
as the one passed in, the periodic alarm continues, otherwise a new alarm is scheduled.

To cancel a currently running timer, calDL_SetTimer(0, NULL);

The timer callback function may run in a different thread than your main constant, and so shouldn’t
call any functions from within itself.

The maximum resolution of this timer is 10 ms, which means that if you request a 16 ms timer, your
callback will run approximately 20 ms later on an unloaded system. If you wanted to set a flag
signaling a frame update at 30 frames per second (every 33 ms), you might set a timer for 30 ms (see
example below).

If you use this function, you need to pa&BL_INIT_TIMER to SDL_Init()

Note: This function is kept for compatibility but has been superseded by the new timer functions
SDL_AddTimer and SDL_RemoveTimer which support multiple timers.

273

SDL_SetTimer

Examples

SDL_SetTimer((33/10)*10, my_callback);

See Also

SDL_AddTimer

274

