
SDL Library Documentation

SDL Library Documentation
Published v1.2.0, April 2001

"Simple, efficient, and portable"

Table of Contents
I. SDL Guide...i

Preface..i
About SDL..i
About SDLdoc..i
Credits...i

1. The Basics...2
Introduction...2
Initializing SDL...2

2. Graphics and Video...1
Introduction to SDL Video..1

Initializing the Video Display..1
Initializing the Best Video Mode...1
Loading and Displaying a BMP File...2
Drawing Directly to the Display..3

Using OpenGL With SDL...5
Initialisation...5
Drawing..7

3. Input handling...17
Handling Joysticks...17

Initialization...17
Querying..17
Opening a Joystick and Receiving Joystick Events...18
Advanced Joystick Functions...20

Handling the Keyboard..22
Keyboard Related Structures...22

SDLKey..22
SDLMod...22
SDL_keysym..22
SDL_KeyboardEvent...23

Reading Keyboard Events..23
A More Detailed Look...24
Game-type Input..27

4. Examples...31
Introduction...31
Event Examples...31

Filtering and Handling Events...31
Audio Examples..33

Opening the audio device...33
Playing audio...33

3

CDROM Examples..34
Listing CD-ROM drives...34
Opening the default drive...35
Listing the tracks on a CD...36
Play an entire CD...36

Time Examples..37
Time based game loop...37

II. SDL Reference...38

5. General..39
SDL_Init..39
SDL_InitSubSystem..41
SDL_QuitSubSystem..43
SDL_Quit..44
SDL_WasInit...45

6. Video...47
SDL_GetVideoSurface..47
SDL_GetVideoInfo..49
SDL_VideoDriverName..50
SDL_ListModes..51
SDL_VideoModeOK...53
SDL_SetVideoMode..55
SDL_UpdateRect...57
SDL_UpdateRects...58
SDL_Flip...59
SDL_SetColors..60
SDL_SetPalette..62
SDL_SetGamma..64
SDL_GetGammaRamp..65
SDL_SetGammaRamp..66
SDL_MapRGB..67
SDL_MapRGBA...68
SDL_GetRGB..69
SDL_GetRGBA...70
SDL_CreateRGBSurface...71
SDL_CreateRGBSurfaceFrom..73
SDL_FreeSurface..74
SDL_LockSurface...75
SDL_UnlockSurface..77
SDL_LoadBMP...78
SDL_SaveBMP...79
SDL_SetColorKey...80
SDL_SetAlpha...81
SDL_SetClipRect..84
SDL_GetClipRect..85

4

SDL_ConvertSurface...86
SDL_BlitSurface...87
SDL_FillRect...89
SDL_DisplayFormat..90
SDL_DisplayFormatAlpha..91
SDL_WarpMouse..92
SDL_CreateCursor..93
SDL_FreeCursor..96
SDL_SetCursor..97
SDL_GetCursor...98
SDL_ShowCursor..99
SDL_GL_LoadLibrary..100
SDL_GL_GetProcAddress..101
SDL_GL_GetAttribute..103
SDL_GL_SetAttribute...104
SDL_GL_SwapBuffers...106
SDL_CreateYUVOverlay..107
SDL_LockYUVOverlay..108
SDL_UnlockYUVOverlay..109
SDL_DisplayYUVOverlay..110
SDL_FreeYUVOverlay...111
SDL_GLattr...112
SDL_Rect..113
SDL_Color..114
SDL_Palette...115
SDL_PixelFormat..116
SDL_Surface...120
SDL_VideoInfo...122
SDL_Overlay...124

7. Window Management...126
SDL_WM_SetCaption..126
SDL_WM_GetCaption..127
SDL_WM_SetIcon..128
SDL_WM_IconifyWindow...129
SDL_WM_ToggleFullScreen..130
SDL_WM_GrabInput..131

8. Events..132
Introduction...132
SDL Event Structures..132

SDL_Event...132
SDL_ActiveEvent..136
SDL_KeyboardEvent...138
SDL_MouseMotionEvent..139
SDL_MouseButtonEvent...141

5

SDL_JoyAxisEvent..143
SDL_JoyButtonEvent..144
SDL_JoyHatEvent...145
SDL_JoyBallEvent..147
SDL_ResizeEvent..148
SDL_SysWMEvent..149
SDL_UserEvent...150
SDL_QuitEvent..152
SDL_keysym..153
SDLKey...155

Event Functions...160
SDL_PumpEvents..160
SDL_PeepEvents...161
SDL_PollEvent..162
SDL_WaitEvent...164
SDL_PushEvent...165
SDL_SetEventFilter...166
SDL_GetEventFilter..168
SDL_EventState...169
SDL_GetKeyState..170
SDL_GetModState...171
SDL_SetModState...173
SDL_GetKeyName..174
SDL_EnableUNICODE...175
SDL_EnableKeyRepeat...176
SDL_GetMouseState...177
SDL_GetRelativeMouseState..178
SDL_GetAppState...179
SDL_JoystickEventState..180

9. Joystick..181
SDL_NumJoysticks...181
SDL_JoystickName...183
SDL_JoystickOpen..184
SDL_JoystickOpened..186
SDL_JoystickIndex...187
SDL_JoystickNumAxes..188
SDL_JoystickNumBalls..189
SDL_JoystickNumHats...190
SDL_JoystickNumButtons..191
SDL_JoystickUpdate...192
SDL_JoystickGetAxis...193
SDL_JoystickGetHat...195
SDL_JoystickGetButton..196
SDL_JoystickGetBall..197

6

SDL_JoystickClose...199
10. Audio...200

SDL_AudioSpec..200
SDL_OpenAudio...204
SDL_PauseAudio..207
SDL_GetAudioStatus..208
SDL_LoadWAV...209
SDL_FreeWAV..211
SDL_AudioCVT..212
SDL_BuildAudioCVT...214
SDL_ConvertAudio...215
SDL_MixAudio...218
SDL_LockAudio...219
SDL_UnlockAudio..220
SDL_CloseAudio..221

11. CD-ROM...222
SDL_CDNumDrives...222
SDL_CDName..224
SDL_CDOpen...225
SDL_CDStatus..227
SDL_CDPlay...229
SDL_CDPlayTracks..230
SDL_CDPause...232
SDL_CDResume...233
SDL_CDStop...234
SDL_CDEject..235
SDL_CDClose...236
SDL_CD..237
SDL_CDtrack..239

12. Multi-threaded Programming..240
SDL_CreateThread..240
SDL_ThreadID..242
SDL_GetThreadID..243
SDL_WaitThread...244
SDL_KillThread..245
SDL_CreateMutex...246
SDL_DestroyMutex...248
SDL_mutexP...249
SDL_mutexV...250
SDL_CreateSemaphore...251
SDL_DestroySemaphore...253
SDL_SemWait...254
SDL_SemTryWait...256
SDL_SemWaitTimeout..258

7

SDL_SemPost..260
SDL_SemValue...261
SDL_CreateCond..262
SDL_DestroyCond..263
SDL_CondSignal...264
SDL_CondBroadcast...265
SDL_CondWait...266
SDL_CondWaitTimeout..267

13. Time..268
SDL_GetTicks...268
SDL_Delay..269
SDL_AddTimer...270
SDL_RemoveTimer...272
SDL_SetTimer...273

8

List of Tables
8-1. SDL Keysym definitions...155
8-2. SDL modifier definitions...159

List of Examples
1-1. Initializing SDL...2
2-1. Initializing the Video Display..1
2-2. Initializing the Best Video Mode...1
2-3. Loading and Displaying a BMP File...2
2-4. getpixel()...3
2-5. putpixel()...3
2-6. Using putpixel()...4
2-7. Initializing SDL with OpenGL..5
2-8. SDL and OpenGL..8
3-1. Initializing SDL with Joystick Support...17
3-2. Querying the Number of Available Joysticks..17
3-3. Opening a Joystick..18
3-4. Joystick Axis Events..19
3-5. More Joystick Axis Events..19
3-6. Joystick Button Events..20
3-7. Joystick Ball Events..20
3-8. Joystick Hat Events...21
3-9. Querying Joystick Characteristics...22
3-10. Reading Keyboard Events...23
3-11. Interpreting Key Event Information..24
3-12. Proper Game Movement..28

1

I. SDL Guide

Preface

About SDL
The SDL library is designed to make it easy to write games that run on Linux, *BSD, MacOS,
Win32 and BeOS using the various native high-performance media interfaces, (for video, audio, etc)
and presenting a single source-code level API to your application. SDL is a fairly low level API, but
using it, completely portable applications can be written with a great deal of flexibility.

About SDLdoc
SDLdoc (The SDL Documentation Project) was formed to completely rewrite the SDL
documentation and to keep it continually up to date. The team consists completely of volunteers
ranging from people working with SDL in their spare time to people who use SDL in their everyday
working lives.

The latest version of this documentation can always be found here: http://sdldoc.csn.ul.ie
Downloadable PS, man pages and html tarballs are available at http://sdldoc.csn.ul.ie/pub/

Credits

Sam Lantinga, slouken@libsdl.org
Martin Donlon, akawaka@skynet.ie
Mattias Engdegård
Julian Peterson
Ken Jordan
Maxim Sobolev
Wesley Poole
Michael Vance
Andreas Umbach
Andreas Hofmeister

1

Chapter 1. The Basics

Introduction
The SDL Guide section is pretty incomplete. If you feel you have anything to add mail
akawaka@skynet.ie or visit http://akawaka.csn.ul.ie/tne/.

Initializing SDL
SDL is composed of eight subsystems - Audio, CDROM, Event Handling, File I/O, Joystick
Handling, Threading, Timers and Video. Before you can use any of these subsystems they must be
initialized by callingSDL_Init (or SDL_InitSubSystem . SDL_Init must be called before any
other SDL function. It automatically initializes the Event Handling, File I/O and Threading
subsystems and it takes a parameter specifying which other subsystems to initialize. So, to initialize
the default subsystems and the Video subsystems you would call:

SDL_Init (SDL_INIT_VIDEO);

To initialize the default subsystems, the Video subsystem and the Timers subsystem you would call:

SDL_Init (SDL_INIT_VIDEO | SDL_INIT_TIMER);

SDL_Init is complemented bySDL_Quit (andSDL_QuitSubSystem). SDL_Quit shuts down all
subsystems, including the default ones. It should always be called before a SDL application exits.

With SDL_Init andSDL_Quit firmly embedded in your programmers toolkit you can write your
first and most basic SDL application. However, we must be prepare to handle errors. Many SDL
functions return a value and indicates whether the function has succeeded or failed,SDL_Init , for
instance, returns -1 if it could not initialize a subsystem. SDL provides a useful facility that allows
you to determine exactly what the problem was, every time an error occurs within SDL an error
message is stored which can be retrieved usingSDL_GetError . Use this often, you can never know
too much about an error.

Example 1-1. Initializing SDL

#include "SDL.h" /* All SDL App’s need this */
#include <stdio.h>

int main() {

printf("Initializing SDL.\n");

2

Chapter 1. The Basics

/* Initialize defaults, Video and Audio */
if((SDL_Init(SDL_INIT_VIDEO|SDL_INIT_AUDIO)==-1)) {

printf("Could not initialize SDL: %s.\n", SDL_GetError());
exit(-1);

}

printf("SDL initialized.\n");

printf("Quiting SDL.\n");

/* Shutdown all subsystems */
SDL_Quit();

printf("Quiting....\n");

exit(0);
}

3

Chapter 2. Graphics and Video

Introduction to SDL Video
Video is probably the most common thing that SDL is used for, and so it has the most complete
subsystem. Here are a few examples to demonstrate the basics.

Initializing the Video Display
This is what almost all SDL programs have to do in one way or another.

Example 2-1. Initializing the Video Display

SDL_Surface *screen;

/* Initialize the SDL library */
if(SDL_Init(SDL_INIT_VIDEO) < 0) {

fprintf(stderr,
"Couldn’t initialize SDL: %s\n", SDL_GetError());

exit(1);
}

/* Clean up on exit */
atexit(SDL_Quit);

/*
* Initialize the display in a 640x480 8-bit palettized mode,
* requesting a software surface
*/

screen = SDL_SetVideoMode(640, 480, 8, SDL_SWSURFACE);
if (screen == NULL) {

fprintf(stderr, "Couldn’t set 640x480x8 video mode: %s\n",
SDL_GetError());

exit(1);
}

Initializing the Best Video Mode
If you have a preference for a certain pixel depth but will accept any other, use SDL_SetVideoMode
with SDL_ANYFORMAT as below. You can also use SDL_VideoModeOK() to find the native video
mode that is closest to the mode you request.

1

Chapter 2. Graphics and Video

Example 2-2. Initializing the Best Video Mode

/* Have a preference for 8-bit, but accept any depth */
screen = SDL_SetVideoMode(640, 480, 8, SDL_SWSURFACE|SDL_ANYFORMAT);
if (screen == NULL) {

fprintf(stderr, "Couldn’t set 640x480x8 video mode: %s\n",
SDL_GetError());

exit(1);
}
printf("Set 640x480 at %d bits-per-pixel mode\n",

screen->format->BitsPerPixel);

Loading and Displaying a BMP File
The following function loads and displays a BMP file given as argument, once SDL is initialised and
a video mode has been set.

Example 2-3. Loading and Displaying a BMP File

void display_bmp(char *file_name)
{

SDL_Surface *image;

/* Load the BMP file into a surface */
image = SDL_LoadBMP(file_name);
if (image == NULL) {

fprintf(stderr, "Couldn’t load %s: %s\n", file_name, SDL_GetError());
return;

}

/*
* Palettized screen modes will have a default palette (a standard
* 8*8*4 colour cube), but if the image is palettized as well we can
* use that palette for a nicer colour matching
*/

if (image->format->palette && screen->format->palette) {
SDL_SetColors(screen, image->format->palette->colors, 0,

image->format->palette->ncolors);
}

/* Blit onto the screen surface */
if(SDL_BlitSurface(image, NULL, screen, NULL) < 0)

fprintf(stderr, "BlitSurface error: %s\n", SDL_GetError());

SDL_UpdateRect(screen, 0, 0, image->w, image->h);

/* Free the allocated BMP surface */

2

Chapter 2. Graphics and Video

SDL_FreeSurface(image);
}

Drawing Directly to the Display
The following two functions can be used to get and set single pixels of a surface. They are carefully
written to work with any depth currently supported by SDL. Remember to lock the surface before
calling them, and to unlock it before calling any other SDL functions.

To convert between pixel values and their red, green, blue components, use SDL_GetRGB() and
SDL_MapRGB().

Example 2-4. getpixel()

/*
* Return the pixel value at (x, y)
* NOTE: The surface must be locked before calling this!
*/

Uint32 getpixel(SDL_Surface *surface, int x, int y)
{

int bpp = surface->format->BytesPerPixel;
/* Here p is the address to the pixel we want to retrieve */
Uint8 *p = (Uint8 *)surface->pixels + y * surface->pitch + x * bpp;

switch(bpp) {
case 1:

return *p;

case 2:
return *(Uint16 *)p;

case 3:
if(SDL_BYTEORDER == SDL_BIG_ENDIAN)

return p[0] << 16 | p[1] << 8 | p[2];
else

return p[0] | p[1] << 8 | p[2] << 16;

case 4:
return *(Uint32 *)p;

default:
return 0; /* shouldn’t happen, but avoids warnings */

}
}

3

Chapter 2. Graphics and Video

Example 2-5. putpixel()

/*
* Set the pixel at (x, y) to the given value
* NOTE: The surface must be locked before calling this!
*/

void putpixel(SDL_Surface *surface, int x, int y, Uint32 pixel)
{

int bpp = surface->format->BytesPerPixel;
/* Here p is the address to the pixel we want to set */
Uint8 *p = (Uint8 *)surface->pixels + y * surface->pitch + x * bpp;

switch(bpp) {
case 1:

*p = pixel;
break;

case 2:
*(Uint16 *)p = pixel;
break;

case 3:
if(SDL_BYTEORDER == SDL_BIG_ENDIAN) {

p[0] = (pixel >> 16) & 0xff;
p[1] = (pixel >> 8) & 0xff;
p[2] = pixel & 0xff;

} else {
p[0] = pixel & 0xff;
p[1] = (pixel >> 8) & 0xff;
p[2] = (pixel >> 16) & 0xff;

}
break;

case 4:
*(Uint32 *)p = pixel;
break;

}
}

The following code uses the putpixel() function above to set a yellow pixel in the middle of the
screen.

Example 2-6. Using putpixel()

/* Code to set a yellow pixel at the center of the screen */

int x, y;
Uint32 yellow;

4

Chapter 2. Graphics and Video

/* Map the color yellow to this display (R=0xff, G=0xFF, B=0x00)
Note: If the display is palettized, you must set the palette first.

*/
yellow = SDL_MapRGB(screen->format, 0xff, 0xff, 0x00);

x = screen->w / 2;
y = screen->h / 2;

/* Lock the screen for direct access to the pixels */
if (SDL_MUSTLOCK(screen)) {

if (SDL_LockSurface(screen) < 0) {
fprintf(stderr, "Can’t lock screen: %s\n", SDL_GetError());
return;

}
}

putpixel(screen, x, y, yellow);

if (SDL_MUSTLOCK(screen)) {
SDL_UnlockSurface(screen);

}
/* Update just the part of the display that we’ve changed */
SDL_UpdateRect(screen, x, y, 1, 1);

return;

Using OpenGL With SDL
SDL has the ability to create and use OpenGL contexts on several platforms(Linux/X11, Win32,
BeOS, MacOS Classic/Toolbox, MacOS X, FreeBSD/X11 and Solaris/X11). This allows you to use
SDL’s audio, event handling, threads and times in your OpenGL applications (a function often
performed by GLUT).

Initialisation
Initialising SDL to use OpenGL is not very different to initialising SDL normally. There are three
differences; you must passSDL_OPENGLto SDL_SetVideoMode , you must specify several GL
attributes (depth buffer size, framebuffer sizes) usingSDL_GL_SetAttribute and finally, if you
wish to use double buffering you must specify it as a GL attribute,not by passing the
SDL_DOUBLEBUFflag toSDL_SetVideoMode .

5

Chapter 2. Graphics and Video

Example 2-7. Initializing SDL with OpenGL

/* Information about the current video settings. */
const SDL_VideoInfo* info = NULL;
/* Dimensions of our window. */
int width = 0;
int height = 0;
/* Color depth in bits of our window. */
int bpp = 0;
/* Flags we will pass into SDL_SetVideoMode. */
int flags = 0;

/* First, initialize SDL’s video subsystem. */
if(SDL_Init(SDL_INIT_VIDEO) < 0) {

/* Failed, exit. */
fprintf(stderr, "Video initialization failed: %s\n",

SDL_GetError());
quit_tutorial(1);

}

/* Let’s get some video information. */
info = SDL_GetVideoInfo();

if(!info) {
/* This should probably never happen. */
fprintf(stderr, "Video query failed: %s\n",

SDL_GetError());
quit_tutorial(1);

}

/*
* Set our width/height to 640/480 (you would
* of course let the user decide this in a normal
* app). We get the bpp we will request from
* the display. On X11, VidMode can’t change
* resolution, so this is probably being overly
* safe. Under Win32, ChangeDisplaySettings
* can change the bpp.
*/

width = 640;
height = 480;
bpp = info->vfmt->BitsPerPixel;

/*
* Now, we want to setup our requested
* window attributes for our OpenGL window.
* We want *at least* 5 bits of red, green
* and blue. We also want at least a 16-bit
* depth buffer.

6

Chapter 2. Graphics and Video

*
* The last thing we do is request a double
* buffered window. ’1’ turns on double
* buffering, ’0’ turns it off.
*
* Note that we do not use SDL_DOUBLEBUF in
* the flags to SDL_SetVideoMode. That does
* not affect the GL attribute state, only
* the standard 2D blitting setup.
*/

SDL_GL_SetAttribute(SDL_GL_RED_SIZE, 5);
SDL_GL_SetAttribute(SDL_GL_GREEN_SIZE, 5);
SDL_GL_SetAttribute(SDL_GL_BLUE_SIZE, 5);
SDL_GL_SetAttribute(SDL_GL_DEPTH_SIZE, 16);
SDL_GL_SetAttribute(SDL_GL_DOUBLEBUFFER, 1);

/*
* We want to request that SDL provide us
* with an OpenGL window, in a fullscreen
* video mode.
*
* EXERCISE:
* Make starting windowed an option, and
* handle the resize events properly with
* glViewport.
*/

flags = SDL_OPENGL | SDL_FULLSCREEN;

/*
* Set the video mode
*/

if(SDL_SetVideoMode(width, height, bpp, flags) == 0) {
/*

* This could happen for a variety of reasons,
* including DISPLAY not being set, the specified
* resolution not being available, etc.
*/

fprintf(stderr, "Video mode set failed: %s\n",
SDL_GetError());

quit_tutorial(1);
}

Drawing
Apart from initialisation, using OpenGL within SDL is the same as using OpenGL with any other
API, e.g. GLUT. You still use all the same function calls and data types. However if you are using a
double-buffered display, then you must useSDL_GL_SwapBuffers() to swap the buffers and

7

Chapter 2. Graphics and Video

update the display. To request double-buffering with OpenGL, useSDL_GL_SetAttribute with
SDL_GL_DOUBLEBUFFER, and useSDL_GL_GetAttribute to see if you actually got it.

A full example code listing is now presented below.

Example 2-8. SDL and OpenGL

/*
* SDL OpenGL Tutorial.
* (c) Michael Vance, 2000
* briareos@lokigames.com
*
* Distributed under terms of the LGPL.
*/

#include <SDL/SDL.h>
#include <GL/gl.h>
#include <GL/glu.h>

#include <stdio.h>
#include <stdlib.h>

static GLboolean should_rotate = GL_TRUE;

static void quit_tutorial(int code)
{

/*
* Quit SDL so we can release the fullscreen
* mode and restore the previous video settings,
* etc.
*/

SDL_Quit();

/* Exit program. */
exit(code);

}

static void handle_key_down(SDL_keysym* keysym)
{

/*
* We’re only interested if ’Esc’ has
* been presssed.
*
* EXERCISE:
* Handle the arrow keys and have that change the
* viewing position/angle.
*/

switch(keysym->sym) {

8

Chapter 2. Graphics and Video

case SDLK_ESCAPE:
quit_tutorial(0);
break;

case SDLK_SPACE:
should_rotate = !should_rotate;
break;

default:
break;

}

}

static void process_events(void)
{

/* Our SDL event placeholder. */
SDL_Event event;

/* Grab all the events off the queue. */
while(SDL_PollEvent(&event)) {

switch(event.type) {
case SDL_KEYDOWN:

/* Handle key presses. */
handle_key_down(&event.key.keysym);
break;

case SDL_QUIT:
/* Handle quit requests (like Ctrl-c). */
quit_tutorial(0);
break;

}

}

}

static void draw_screen(void)
{

/* Our angle of rotation. */
static float angle = 0.0f;

/*
* EXERCISE:
* Replace this awful mess with vertex
* arrays and a call to glDrawElements.
*
* EXERCISE:
* After completing the above, change
* it to use compiled vertex arrays.
*

9

Chapter 2. Graphics and Video

* EXERCISE:
* Verify my windings are correct here ;).
*/

static GLfloat v0[] = { -1.0f, -1.0f, 1.0f };
static GLfloat v1[] = { 1.0f, -1.0f, 1.0f };
static GLfloat v2[] = { 1.0f, 1.0f, 1.0f };
static GLfloat v3[] = { -1.0f, 1.0f, 1.0f };
static GLfloat v4[] = { -1.0f, -1.0f, -1.0f };
static GLfloat v5[] = { 1.0f, -1.0f, -1.0f };
static GLfloat v6[] = { 1.0f, 1.0f, -1.0f };
static GLfloat v7[] = { -1.0f, 1.0f, -1.0f };
static GLubyte red[] = { 255, 0, 0, 255 };
static GLubyte green[] = { 0, 255, 0, 255 };
static GLubyte blue[] = { 0, 0, 255, 255 };
static GLubyte white[] = { 255, 255, 255, 255 };
static GLubyte yellow[] = { 0, 255, 255, 255 };
static GLubyte black[] = { 0, 0, 0, 255 };
static GLubyte orange[] = { 255, 255, 0, 255 };
static GLubyte purple[] = { 255, 0, 255, 0 };

/* Clear the color and depth buffers. */
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

/* We don’t want to modify the projection matrix. */
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();

/* Move down the z-axis. */
glTranslatef(0.0, 0.0, -5.0);

/* Rotate. */
glRotatef(angle, 0.0, 1.0, 0.0);

if(should_rotate) {

if(++angle > 360.0f) {
angle = 0.0f;

}

}

/* Send our triangle data to the pipeline. */
glBegin(GL_TRIANGLES);

glColor4ubv(red);
glVertex3fv(v0);
glColor4ubv(green);
glVertex3fv(v1);
glColor4ubv(blue);

10

Chapter 2. Graphics and Video

glVertex3fv(v2);

glColor4ubv(red);
glVertex3fv(v0);
glColor4ubv(blue);
glVertex3fv(v2);
glColor4ubv(white);
glVertex3fv(v3);

glColor4ubv(green);
glVertex3fv(v1);
glColor4ubv(black);
glVertex3fv(v5);
glColor4ubv(orange);
glVertex3fv(v6);

glColor4ubv(green);
glVertex3fv(v1);
glColor4ubv(orange);
glVertex3fv(v6);
glColor4ubv(blue);
glVertex3fv(v2);

glColor4ubv(black);
glVertex3fv(v5);
glColor4ubv(yellow);
glVertex3fv(v4);
glColor4ubv(purple);
glVertex3fv(v7);

glColor4ubv(black);
glVertex3fv(v5);
glColor4ubv(purple);
glVertex3fv(v7);
glColor4ubv(orange);
glVertex3fv(v6);

glColor4ubv(yellow);
glVertex3fv(v4);
glColor4ubv(red);
glVertex3fv(v0);
glColor4ubv(white);
glVertex3fv(v3);

glColor4ubv(yellow);
glVertex3fv(v4);
glColor4ubv(white);
glVertex3fv(v3);
glColor4ubv(purple);

11

Chapter 2. Graphics and Video

glVertex3fv(v7);

glColor4ubv(white);
glVertex3fv(v3);
glColor4ubv(blue);
glVertex3fv(v2);
glColor4ubv(orange);
glVertex3fv(v6);

glColor4ubv(white);
glVertex3fv(v3);
glColor4ubv(orange);
glVertex3fv(v6);
glColor4ubv(purple);
glVertex3fv(v7);

glColor4ubv(green);
glVertex3fv(v1);
glColor4ubv(red);
glVertex3fv(v0);
glColor4ubv(yellow);
glVertex3fv(v4);

glColor4ubv(green);
glVertex3fv(v1);
glColor4ubv(yellow);
glVertex3fv(v4);
glColor4ubv(black);
glVertex3fv(v5);

glEnd();

/*
* EXERCISE:
* Draw text telling the user that ’Spc’
* pauses the rotation and ’Esc’ quits.
* Do it using vetors and textured quads.
*/

/*
* Swap the buffers. This this tells the driver to
* render the next frame from the contents of the
* back-buffer, and to set all rendering operations
* to occur on what was the front-buffer.
*
* Double buffering prevents nasty visual tearing
* from the application drawing on areas of the
* screen that are being updated at the same time.
*/

12

Chapter 2. Graphics and Video

SDL_GL_SwapBuffers();
}

static void setup_opengl(int width, int height)
{

float ratio = (float) width / (float) height;

/* Our shading model--Gouraud (smooth). */
glShadeModel(GL_SMOOTH);

/* Culling. */
glCullFace(GL_BACK);
glFrontFace(GL_CCW);
glEnable(GL_CULL_FACE);

/* Set the clear color. */
glClearColor(0, 0, 0, 0);

/* Setup our viewport. */
glViewport(0, 0, width, height);

/*
* Change to the projection matrix and set
* our viewing volume.
*/

glMatrixMode(GL_PROJECTION);
glLoadIdentity();
/*

* EXERCISE:
* Replace this with a call to glFrustum.
*/

gluPerspective(60.0, ratio, 1.0, 1024.0);
}

int main(int argc, char* argv[])
{

/* Information about the current video settings. */
const SDL_VideoInfo* info = NULL;
/* Dimensions of our window. */
int width = 0;
int height = 0;
/* Color depth in bits of our window. */
int bpp = 0;
/* Flags we will pass into SDL_SetVideoMode. */
int flags = 0;

/* First, initialize SDL’s video subsystem. */
if(SDL_Init(SDL_INIT_VIDEO) < 0) {

/* Failed, exit. */

13

Chapter 2. Graphics and Video

fprintf(stderr, "Video initialization failed: %s\n",
SDL_GetError());

quit_tutorial(1);
}

/* Let’s get some video information. */
info = SDL_GetVideoInfo();

if(!info) {
/* This should probably never happen. */
fprintf(stderr, "Video query failed: %s\n",

SDL_GetError());
quit_tutorial(1);

}

/*
* Set our width/height to 640/480 (you would
* of course let the user decide this in a normal
* app). We get the bpp we will request from
* the display. On X11, VidMode can’t change
* resolution, so this is probably being overly
* safe. Under Win32, ChangeDisplaySettings
* can change the bpp.
*/

width = 640;
height = 480;
bpp = info->vfmt->BitsPerPixel;

/*
* Now, we want to setup our requested
* window attributes for our OpenGL window.
* We want *at least* 5 bits of red, green
* and blue. We also want at least a 16-bit
* depth buffer.
*
* The last thing we do is request a double
* buffered window. ’1’ turns on double
* buffering, ’0’ turns it off.
*
* Note that we do not use SDL_DOUBLEBUF in
* the flags to SDL_SetVideoMode. That does
* not affect the GL attribute state, only
* the standard 2D blitting setup.
*/

SDL_GL_SetAttribute(SDL_GL_RED_SIZE, 5);
SDL_GL_SetAttribute(SDL_GL_GREEN_SIZE, 5);
SDL_GL_SetAttribute(SDL_GL_BLUE_SIZE, 5);
SDL_GL_SetAttribute(SDL_GL_DEPTH_SIZE, 16);
SDL_GL_SetAttribute(SDL_GL_DOUBLEBUFFER, 1);

14

Chapter 2. Graphics and Video

/*
* We want to request that SDL provide us
* with an OpenGL window, in a fullscreen
* video mode.
*
* EXERCISE:
* Make starting windowed an option, and
* handle the resize events properly with
* glViewport.
*/

flags = SDL_OPENGL | SDL_FULLSCREEN;

/*
* Set the video mode
*/

if(SDL_SetVideoMode(width, height, bpp, flags) == 0) {
/*

* This could happen for a variety of reasons,
* including DISPLAY not being set, the specified
* resolution not being available, etc.
*/

fprintf(stderr, "Video mode set failed: %s\n",
SDL_GetError());

quit_tutorial(1);
}

/*
* At this point, we should have a properly setup
* double-buffered window for use with OpenGL.
*/

setup_opengl(width, height);

/*
* Now we want to begin our normal app process--
* an event loop with a lot of redrawing.
*/

while(1) {
/* Process incoming events. */
process_events();
/* Draw the screen. */
draw_screen();

}

/*
* EXERCISE:
* Record timings using SDL_GetTicks() and
* and print out frames per second at program
* end.

15

Chapter 2. Graphics and Video

*/

/* Never reached. */
return 0;

}

16

Chapter 3. Input handling

Handling Joysticks

Initialization
The first step in using a joystick in a SDL program is to initialize the Joystick subsystems of SDL.
This done by passing theSDL_INIT_JOYSTICK flag toSDL_Init . The joystick flag will usually be
used in conjunction with other flags (like the video flag) because the joystick is usually used to
control something.

Example 3-1. Initializing SDL with Joystick Support

if (! SDL_Init(SDL_INIT_VIDEO | SDL_INIT_JOYSTICK))
{

fprintf(stderr, "Couldn’t initialize SDL: %s\n", SDL_GetError());
exit(1);

}

This will attempt to start SDL with both the video and the joystick subsystems activated.

Querying
If we have reached this point then we can safely assume that the SDL library has been initialized and
that the Joystick subsystem is active. We can now call some video and/or sound functions to get
things going before we need the joystick. Eventually we have to make sure that there is actually a
joystick to work with. It’s wise to always check even if you know a joystick will be present on the
system because it can also help detect when the joystick is unplugged. The function used to check
for joysticks isSDL_NumJoysticks .

This function simply returns the number of joysticks available on the system. If it is at least one then
we are in good shape. The next step is to determine which joystick the user wants to use. If the
number of joysticks available is only one then it is safe to assume that one joystick is the one the user
wants to use. SDL has a function to get the name of the joysticks as assigned by the operations
system and that function isSDL_JoystickName . The joystick is specified by an index where 0 is
the first joystick and the last joystick is the number returned bySDL_NumJoysticks - 1. In the
demonstration a list of all available joysticks is printed to stdout.

Example 3-2. Querying the Number of Available Joysticks

printf("%i joysticks were found.\n\n", SDL_NumJoysticks());
printf("The names of the joysticks are:\n");

17

Chapter 3. Input handling

for(i=0; i < SDL_NumJoysticks(); i++)
{

printf(" %s\n", SDL_JoystickName(i));
}

Opening a Joystick and Receiving Joystick Events
SDL’s event driven architecture makes working with joysticks a snap. Joysticks can trigger 4
different types of events:

SDL_JoyAxisEvent Occurs when an axis changes
SDL_JoyBallEvent Occurs when a joystick trackball’s position changes
SDL_JoyHatEvent Occurs when a hat’s position changes
SDL_JoyButtonEventOccurs when a button is pressed or released

Events are received from all joysticks opened. The first thing that needs to be done in order to
receive joystick events is to callSDL_JoystickEventState with theSDL_ENABLEflag. Next you
must open the joysticks that you want to receive envents from. This is done with the
SDL_JoystickOpen function. For the example we are only interested in events from the first
joystick on the system, regardless of what it may be. To receive events from it we would do this:

Example 3-3. Opening a Joystick

SDL_Joystick *joystick;

SDL_JoystickEventState(SDL_ENABLE);
joystick = SDL_JoystickOpen(0);

If we wanted to receive events for other joysticks we would open them with calls to
SDL_JoystickOpen just like we opened joystick 0, except we would store the SDL_Joystick
structure they return in a different pointer. We only need the joystick pointer when we are querying
the joysticks or when we are closing the joystick.

Up to this point all the code we have is used just to initialize the joysticks in order to read values at
run time. All we need now is an event loop, which is something that all SDL programs should have
anyway to receive the systems quit events. We must now add code to check the event loop for at least
some of the above mentioned events. Let’s assume our event loop looks like this:

SDL_Event event;
/* Other initializtion code goes here */

/* Start main game loop here */

while(SDL_PollEvent(&event))
{

18

Chapter 3. Input handling

switch(event.type)
{

case SDL_KEYDOWN:
/* handle keyboard stuff here */
break;

case SDL_QUIT:
/* Set whatever flags are necessary to */
/* end the main game loop here */
break;

}
}

/* End loop here */

To handle Joystick events we merely add cases for them, first we’ll add axis handling code. Axis
checks can get kinda of tricky because alot of the joystick events received are junk. Joystick axis
have a tendency to vary just a little between polling due to the way they are designed. To compensate
for this you have to set a threshold for changes and ignore the events that have’nt exceeded the
threshold. 10% is usually a good threshold value. This sounds a lot more complicated than it is. Here
is the Axis event handler:

Example 3-4. Joystick Axis Events

case SDL_JOYAXISMOTION: /* Handle Joystick Motion */
if ((event.jaxis.value < -3200) || (event.jaxis.value > 3200))
{

/* code goes here */
}
break;

Another trick with axis events is that up-down and left-right movement are two different sets of axes.
The most important axis is axis 0 (left-right) and axis 1 (up-down). To handle them seperatly in the
code we do the following:

Example 3-5. More Joystick Axis Events

case SDL_JOYAXISMOTION: /* Handle Joystick Motion */
if ((event.jaxis.value < -3200) || (event.jaxis.value > 3200))
{

if(event.jaxis.axis == 0)
{

/* Left-right movement code goes here */
}

if(event.jaxis.axis == 1)
{

/* Up-Down movement code goes here */

19

Chapter 3. Input handling

}
}
break;

Ideally the code here should useevent.jaxis.value to scale something. For example lets
assume you are using the joystick to control the movement of a spaceship. If the user is using an
analog joystick and they push the stick a little bit they expect to move less than if they pushed it a lot.
Designing your code for this situation is preferred because it makes the experience for users of
analog controls better and remains the same for users of digital controls.

If your joystick has any additional axis then they may be used for other sticks or throttle controls and
those axis return values too just with differentevent.jaxis.axis values.

Button handling is simple compared to the axis checking.

Example 3-6. Joystick Button Events

case SDL_JOYBUTTONDOWN: /* Handle Joystick Button Presses */
if (event.jbutton.button == 0)
{

/* code goes here */
}
break;

Button checks are simpler than axis checks because a button can only be pressed or not pressed. The
SDL_JOYBUTTONDOWNevent is triggered when a button is pressed and theSDL_JOYBUTTONUPevent
is fired when a button is released. We do have to know what button was pressed though, that is done
by reading theevent.jbutton.button field.

Lastly when we are through using our joysticks we should close them with a call to
SDL_JoystickClose . To close our opened joystick 0 we would do this at the end of our program:

SDL_JoystickClose(joystick);

Advanced Joystick Functions
That takes care of the controls that you can count on being on every joystick under the sun, but there
are a few extra things that SDL can support. Joyballs are next on our list, they are alot like axis we a
few minor differences. Joyballs store relative changes unlike the the absolute postion stored in a axis
event. Also one trackball event contains both the change in x and they change in y. Our case for it is
as follows:

Example 3-7. Joystick Ball Events

case SDL_JOYBALLMOTION: /* Handle Joyball Motion */

20

Chapter 3. Input handling

if(event.jball.ball == 0)
{

/* ball handling */
}
break;

The above checks the first joyball on the joystick. The change in position will be stored in
event.jball.xrel andevent.jball.yrel .

Finally we have the hat event. Hats report only the direction they are pushed in. We check hat’s
position with the bitmasks:

SDL_HAT_CENTERED
SDL_HAT_UP
SDL_HAT_RIGHT
SDL_HAT_DOWN
SDL_HAT_LEFT

Also there are some predefined combinations of the above:
SDL_HAT_RIGHTUP
SDL_HAT_RIGHTDOWN
SDL_HAT_LEFTUP
SDL_HAT_LEFTDOWN

Our case for the hat may resemble the following:

Example 3-8. Joystick Hat Events

case SDL_JOYHATMOTION: /* Handle Hat Motion */
if (event.jhat.hat | SDL_HAT_UP)
{

/* Do up stuff here */
}

if (event.jhat.hat | SDL_HAT_LEFT)
{

/* Do left stuff here */
}

if (event.jhat.hat | SDL_HAT_RIGHTDOWN)
{

/* Do right and down together stuff here */
}
break;

In addition to the queries for number of joysticks on the system and their names there are additional
functions to query the capabilities of attached joysticks:

SDL_JoystickNumAxes Returns the number of joysitck axes
SDL_JoystickNumButtons Returns the number of joysitck buttons
SDL_JoystickNumBalls Returns the number of joysitck balls

21

Chapter 3. Input handling

SDL_JoystickNumHats Returns the number of joysitck hats

To use these functions we just have to pass in the joystick structure we got when we opened the
joystick. For Example:

Example 3-9. Querying Joystick Characteristics

int number_of_buttons;
SDL_Joystick *joystick;

joystick = SDL_JoystickOpen(0);
number_of_buttons = SDL_JoystickNumButtons(joystick);

This block of code would get the number of buttons on the first joystick in the system.

Handling the Keyboard

Keyboard Related Structures
It should make it a lot easier to understand this tutorial is you are familiar with the data types
involved in keyboard access, so I’ll explain them first.

SDLKey

SDLKey is an enumerated type defined in SDL/include/SDL_keysym.h and detailedhere. Each
SDLKey symbol represents a key,SDLK_a corresponds to the ’a’ key on a keyboard,SDLK_SPACE

corresponds to the space bar, and so on.

SDLMod

SDLMod is an enumerated type, similar to SDLKey, however it enumerates keyboard modifiers
(Control, Alt, Shift). The full list of modifier symbols ishere. SDLMod values can be AND’d
together to represent several modifiers.

SDL_keysym

typedef struct{
Uint8 scancode;
SDLKey sym;
SDLMod mod;
Uint16 unicode;

} SDL_keysym;

22

Chapter 3. Input handling

The SDL_keysym structure describes a key press or a key release. Thescancode field is hardware
specific and should be ignored unless you know what your doing. Thesym field is the SDLKey
value of the key being pressed or released. Themod field describes the state of the keyboard
modifiers at the time the key press or release occurred. So a value ofKMOD_NUM | KMOD_CAPS |

KMOD_LSHIFTwould mean that Numlock, Capslock and the left shift key were all press (or enabled
in the case of the lock keys). Finally, theunicode field stores the 16-bit unicode value of the key.

Note: It should be noted and understood that this field is only valid when the SDL_keysym is
describing a key press, not a key release. Unicode values only make sense on a key press
because the unicode value describes an international character and only key presses produce
characters. More information on Unicode can be found at www.unicode.org
(http://www.unicode.org)

Note: Unicode translation must be enabled using the SDL_EnableUNICODE function.

SDL_KeyboardEvent

typedef struct{
Uint8 type;
Uint8 state;
SDL_keysym keysym;

} SDL_KeyboardEvent;

The SDL_KeyboardEvent describes a keyboard event (obviously). Thekey member of the
SDL_Eventunion is a SDL_KeyboardEvent structure. Thetype field specifies whether the event is
a key release (SDL_KEYUP) or a key press (SDL_KEYDOWN) event. Thestate is largely redundant, it
reports the same information as thetype field but uses different values (SDL_RELEASEDand
SDL_PRESSED). Thekeysym contains information of the key press or release that this event
represents (see above).

Reading Keyboard Events
Reading keybaord events from the event queue is quite simple (the event queue and using it is
describedhere). We read events usingSDL_PollEvent in a while() loop and check for
SDL_KEYUPandSDL_KEYDOWNevents using aswitch statement, like so:

Example 3-10. Reading Keyboard Events

SDL_Event event;

23

Chapter 3. Input handling

.

.
/* Poll for events. SDL_PollEvent() returns 0 when there are no */
/* more events on the event queue, our while loop will exit when */
/* that occurs. */
while(SDL_PollEvent(&event)){

/* We are only worried about SDL_KEYDOWN and SDL_KEYUP events */
switch(event.type){

case SDL_KEYDOWN:
printf("Key press detected\n");
break;

case SDL_KEYUP:
printf("Key release detected\n");
break;

default:
break;

}
}
.
.

This is a very basic example. No information about the key press or release is interpreted. We will
explore the other extreme out our first full example below - reporting all available information about
a keyboard event.

A More Detailed Look
Before we can read events SDL must be initialised withSDL_Init and a video mode must be set
usingSDL_SetVideoMode . There are, however, two other functions we must use to obtain all the
information required. We must enable unicode translation by callingSDL_EnableUNICODE(1) and
we must convert SDLKey values into something printable, usingSDL_GetKeyName

Note: It is useful to note that unicode values < 0x80 translate directly a characters ASCII value.
THis is used in the example below

Example 3-11. Interpreting Key Event Information

#include "SDL.h"

/* Function Prototypes */
void PrintKeyInfo(SDL_KeyboardEvent *key);
void PrintModifiers(SDLMod mod);

24

Chapter 3. Input handling

/* main */
int main(int argc, char *argv[]){

SDL_Event event;
int quit = 0;

/* Initialise SDL */
if(SDL_Init(SDL_INIT_VIDEO)){

fprintf(stderr, "Could not initialise SDL: %s\n", SDL_GetError());
exit(-1);

}

/* Set a video mode */
if(!SDL_SetVideoMode(320, 200, 0, 0)){

fprintf(stderr, "Could not set video mode: %s\n", SDL_GetError());
SDL_Quit();
exit(-1);

}

/* Enable Unicode translation */
SDL_EnableUNICODE(1);

/* Loop until an SDL_QUIT event is found */
while(!quit){

/* Poll for events */
while(SDL_PollEvent(&event)){

switch(event.type){
/* Keyboard event */
/* Pass the event data onto PrintKeyInfo() */
case SDL_KEYDOWN:
case SDL_KEYUP:

PrintKeyInfo(&event.key);
break;

/* SDL_QUIT event (window close) */
case SDL_QUIT:

quit = 1;
break;

default:
break;

}

}

}

25

Chapter 3. Input handling

/* Clean up */
SDL_Quit();
exit(0);

}

/* Print all information about a key event */
void PrintKeyInfo(SDL_KeyboardEvent *key){

/* Is it a release or a press? */
if(key->type == SDL_KEYUP)

printf("Release:- ");
else

printf("Press:- ");

/* Print the hardware scancode first */
printf("Scancode: 0x%02X", key->keysym.scancode);
/* Print the name of the key */
printf(", Name: %s", SDL_GetKeyName(key->keysym.sym));
/* We want to print the unicode info, but we need to make */
/* sure its a press event first (remember, release events */
/* don’t have unicode info */
if(key->type == SDL_KEYDOWN){

/* If the Unicode value is less than 0x80 then the */
/* unicode value can be used to get a printable */
/* representation of the key, using (char)unicode. */
printf(", Unicode: ");
if(key->keysym.unicode < 0x80 && key->keysym.unicode > 0){

printf("%c (0x%04X)", (char)key->keysym.unicode,
key->keysym.unicode);

}
else{

printf("? (0x%04X)", key->keysym.unicode);
}

}
printf("\n");
/* Print modifier info */
PrintModifiers(key->keysym.mod);

}

/* Print modifier info */
void PrintModifiers(SDLMod mod){

printf("Modifers: ");

/* If there are none then say so and return */
if(mod == KMOD_NONE){

printf("None\n");
return;

}

26

Chapter 3. Input handling

/* Check for the presence of each SDLMod value */
/* This looks messy, but there really isn’t */
/* a clearer way. */
if(mod & KMOD_NUM) printf("NUMLOCK ");
if(mod & KMOD_CAPS) printf("CAPSLOCK ");
if(mod & KMOD_LCTRL) printf("LCTRL ");
if(mod & KMOD_RCTRL) printf("RCTRL ");
if(mod & KMOD_RSHIFT) printf("RSHIFT ");
if(mod & KMOD_LSHIFT) printf("LSHIFT ");
if(mod & KMOD_RALT) printf("RALT ");
if(mod & KMOD_LALT) printf("LALT ");
if(mod & KMOD_CTRL) printf("CTRL ");
if(mod & KMOD_SHIFT) printf("SHIFT ");
if(mod & KMOD_ALT) printf("ALT ");
printf("\n");

}

Game-type Input
I have found that people using keyboard events for games and other interactive applications don’t
always understand one fundemental point.

Keyboard eventsonly take place when a keys state changes from being unpressed to pressed, and vice
versa.

Imagine you have an image of an alien that you wish to move around using the cursor keys - when
you pressed the left arrow key you want him to slide over to the left, when you press the down key
you want him to slide down the screen. Examine the following code, it highlights and error that
many people have made.

/* Alien screen coordinates */
int alien_x=0, alien_y=0;
.
.
/* Initialise SDL and video modes and all that */
.
/* Main game loop */
/* Check for events */
while(SDL_PollEvent(&event)){

switch(event.type){
/* Look for a keypress */
case SDL_KEYDOWN:

/* Check the SDLKey values and move change the coords */
switch(event.key.keysym.sym){

case SDLK_LEFT:
alien_x -= 1;

27

Chapter 3. Input handling

break;
case SDLK_RIGHT:

alien_x += 1;
break;

case SDLK_UP:
alien_y -= 1;
break;

case SDLK_DOWN:
alien_y += 1;
break;

default:
break;

}
}

}
}
.
.

At first glance you may think this is a perfectly reasonable piece of code for the task, but it isn’t.
Like I said keyboard events only occur when a key changes state, so the user would have to press and
release the left cursor key 100 times to move the alien 100 pixels to the left.

To get around this problem we must not use the events to change the position of the alien, we use the
events to set flags which are then used in a seperate section of code to move the alien. Something
like this:

Example 3-12. Proper Game Movement

/* Alien screen coordinates */
int alien_x=0, alien_y=0;
int alien_xvel=0, alien_yvel=0;
.
.
/* Initialise SDL and video modes and all that */
.
/* Main game loop */
/* Check for events */
while(SDL_PollEvent(&event)){

switch(event.type){
/* Look for a keypress */
case SDL_KEYDOWN:

/* Check the SDLKey values and move change the coords */
switch(event.key.keysym.sym){

case SDLK_LEFT:
alien_xvel = -1;
break;

case SDLK_RIGHT:
alien_xvel = 1;

28

Chapter 3. Input handling

break;
case SDLK_UP:

alien_yvel = -1;
break;

case SDLK_DOWN:
alien_yvel = 1;
break;

default:
break;

}
break;

/* We must also use the SDL_KEYUP events to zero the x */
/* and y velocity variables. But we must also be */
/* careful not to zero the velocities when we shouldn’t*/
case SDL_KEYUP:

switch(event.key.keysym.sym){
case SDLK_LEFT:

/* We check to make sure the alien is moving */
/* to the left. If it is then we zero the */
/* velocity. If the alien is moving to the */
/* right then the right key is still press */
/* so we don’t tocuh the velocity */
if(alien_xvel < 0)

alien_xvel = 0;
break;

case SDLK_RIGHT:
if(alien_xvel > 0)

alien_xvel = 0;
break;

case SDLK_UP:
if(alien_yvel < 0)

alien_yvel = 0;
break;

case SDLK_DOWN:
if(alien_yvel > 0)

alien_yvel = 0;
break;

default:
break;

}
break;

default:
break;

}
}
.
.
/* Update the alien position */

29

Chapter 3. Input handling

alien_x += alien_xvel;
alien_y += alien_yvel;

As can be seen, we use two extra variables, alien_xvel and alien_yvel, which represent the motion of
the ship, it is these variables that we update when we detect keypresses and releases.

30

Chapter 4. Examples

Introduction
For the moment these examples are taken directly from the old SDL documentation. By the 1.2
release these examples should hopefully deal with most common SDL programming problems.

Event Examples

Filtering and Handling Events

#include <stdio.h>
#include <stdlib.h>

#include "SDL.h"

/* This function may run in a separate event thread */
int FilterEvents(const SDL_Event *event) {

static int boycott = 1;

/* This quit event signals the closing of the window */
if ((event->type == SDL_QUIT) && boycott) {

printf("Quit event filtered out -- try again.\n");
boycott = 0;
return(0);

}
if (event->type == SDL_MOUSEMOTION) {

printf("Mouse moved to (%d,%d)\n",
event->motion.x, event->motion.y);

return(0); /* Drop it, we’ve handled it */
}
return(1);

}

int main(int argc, char *argv[])
{

SDL_Event event;

/* Initialize the SDL library (starts the event loop) */
if (SDL_Init(SDL_INIT_VIDEO) < 0) {

fprintf(stderr,

31

Chapter 4. Examples

"Couldn’t initialize SDL: %s\n", SDL_GetError());
exit(1);

}

/* Clean up on exit, exit on window close and interrupt */
atexit(SDL_Quit);

/* Ignore key events */
SDL_EventState(SDL_KEYDOWN, SDL_IGNORE);
SDL_EventState(SDL_KEYUP, SDL_IGNORE);

/* Filter quit and mouse motion events */
SDL_SetEventFilter(FilterEvents);

/* The mouse isn’t much use unless we have a display for reference */
if (SDL_SetVideoMode(640, 480, 8, 0) == NULL) {

fprintf(stderr, "Couldn’t set 640x480x8 video mode: %s\n",
SDL_GetError());

exit(1);
}

/* Loop waiting for ESC+Mouse_Button */
while (SDL_WaitEvent(&event) >= 0) {

switch (event.type) {
case SDL_ACTIVEEVENT: {

if (event.active.state & SDL_APPACTIVE) {
if (event.active.gain) {

printf("App activated\n");
} else {

printf("App iconified\n");
}

}
}
break;

case SDL_MOUSEBUTTONDOWN: {
Uint8 *keys;

keys = SDL_GetKeyState(NULL);
if (keys[SDLK_ESCAPE] == SDL_PRESSED) {

printf("Bye bye...\n");
exit(0);

}
printf("Mouse button pressed\n");

}
break;

case SDL_QUIT: {
printf("Quit requested, quitting.\n");

32

Chapter 4. Examples

exit(0);
}
break;

}
}
/* This should never happen */
printf("SDL_WaitEvent error: %s\n", SDL_GetError());
exit(1);

}

Audio Examples

Opening the audio device

SDL_AudioSpec wanted;
extern void fill_audio(void *udata, Uint8 *stream, int len);

/* Set the audio format */
wanted.freq = 22050;
wanted.format = AUDIO_S16;
wanted.channels = 2; /* 1 = mono, 2 = stereo */
wanted.samples = 1024; /* Good low-latency value for callback */
wanted.callback = fill_audio;
wanted.userdata = NULL;

/* Open the audio device, forcing the desired format */
if (SDL_OpenAudio(&wanted, NULL) < 0) {

fprintf(stderr, "Couldn’t open audio: %s\n", SDL_GetError());
return(-1);

}
return(0);

Playing audio

static Uint8 *audio_chunk;
static Uint32 audio_len;
static Uint8 *audio_pos;

33

Chapter 4. Examples

/* The audio function callback takes the following parameters:
stream: A pointer to the audio buffer to be filled
len: The length (in bytes) of the audio buffer

*/
void fill_audio(void *udata, Uint8 *stream, int len)
{

/* Only play if we have data left */
if (audio_len == 0)

return;

/* Mix as much data as possible */
len = (len > audio_len ? audio_len : len);
SDL_MixAudio(stream, audio_pos, len, SDL_MIX_MAXVOLUME)
audio_pos += len;
audio_len -= len;

}

/* Load the audio data ... */

;;;;;

audio_pos = audio_chunk;

/* Let the callback function play the audio chunk */
SDL_PauseAudio(0);

/* Do some processing */

;;;;;

/* Wait for sound to complete */
while (audio_len > 0) {

SDL_Delay(100); /* Sleep 1/10 second */
}
SDL_CloseAudio();

CDROM Examples

34

Chapter 4. Examples

Listing CD-ROM drives

#include "SDL.h"

/* Initialize SDL first */
if (SDL_Init(SDL_INIT_CDROM) < 0) {

fprintf(stderr, "Couldn’t initialize SDL: %s\n",SDL_GetError());
exit(1);

}
atexit(SDL_Quit);

/* Find out how many CD-ROM drives are connected to the system */
printf("Drives available: %d\n", SDL_CDNumDrives());
for (i=0; i<SDL_CDNumDrives(); ++i) {

printf("Drive %d: \"%s\"\n", i, SDL_CDName(i));
}

Opening the default drive

SDL_CD *cdrom;
CDstatus status;
char *status_str;

cdrom = SDL_CDOpen(0);
if (cdrom == NULL) {

fprintf(stderr, "Couldn’t open default CD-ROM drive: %s\n",
SDL_GetError());

exit(2);
}

status = SDL_CDStatus(cdrom);
switch (status) {

case CD_TRAYEMPTY:
status_str = "tray empty";
break;

case CD_STOPPED:
status_str = "stopped";
break;

case CD_PLAYING:
status_str = "playing";
break;

case CD_PAUSED:
status_str = "paused";
break;

35

Chapter 4. Examples

case CD_ERROR:
status_str = "error state";
break;

}
printf("Drive status: %s\n", status_str);
if (status >= CD_PLAYING) {

int m, s, f;
FRAMES_TO_MSF(cdrom->cur_frame, &m, &s, &f);
printf("Currently playing track %d, %d:%2.2d\n",
cdrom->track[cdrom->cur_track].id, m, s);

}

Listing the tracks on a CD

SDL_CD *cdrom; /* Assuming this has already been set.. */
int i;
int m, s, f;

SDL_CDStatus(cdrom);
printf("Drive tracks: %d\n", cdrom->numtracks);
for (i=0; i<cdrom->numtracks; ++i) {

FRAMES_TO_MSF(cdrom->track[i].length, &m, &s, &f);
if (f > 0)

++s;
printf("\tTrack (index %d) %d: %d:%2.2d\n", i,
cdrom->track[i].id, m, s);

}

Play an entire CD

SDL_CD *cdrom; /* Assuming this has already been set.. */

// Play entire CD:
if (CD_INDRIVE(SDL_CDStatus(cdrom)))

SDL_CDPlayTracks(cdrom, 0, 0, 0, 0);

// Play last track:
if (CD_INDRIVE(SDL_CDStatus(cdrom))) {

SDL_CDPlayTracks(cdrom, cdrom->numtracks-1, 0, 0, 0);
}

36

Chapter 4. Examples

// Play first and second track and 10 seconds of third track:
if (CD_INDRIVE(SDL_CDStatus(cdrom)))

SDL_CDPlayTracks(cdrom, 0, 0, 2, 10);

Time Examples

Time based game loop

#define TICK_INTERVAL 30

Uint32 TimeLeft(void)
{

static Uint32 next_time = 0;
Uint32 now;

now = SDL_GetTicks();
if (next_time <= now) {

next_time = now+TICK_INTERVAL;
return(0);

}
return(next_time-now);

}

/* main game loop

while (game_running) {
UpdateGameState();
SDL_Delay(TimeLeft());

}

37

II. SDL Reference

Chapter 5. General
Before SDL can be used in a program it must be initialized withSDL_Init . SDL_Init initializes all
the subsystems that the user requests (video, audio, joystick, timers and/or cdrom). Once SDL is
initialized with SDL_Init subsystems can be shut down and initialized as needed using
SDL_InitSubSystem andSDL_QuitSubSystem .

SDL must also be shut down before the program exits to make sure it cleans up correctly. Calling
SDL_Quit shuts down all subsystems and frees any resources allocated to SDL.

SDL_Init

Name
SDL_Init — Initializes SDL

Synopsis

#include "SDL.h"
int SDL_Init (Uint32 flags);

Description
Initializes SDL. This should be called before all other SDL functions. Theflags parameter
specifies what part(s) of SDL to initialize.

SDL_INIT_TIMER Initializes thetimersubsystem.

SDL_INIT_AUDIO Initializes theaudiosubsystem.

SDL_INIT_VIDEO Initializes thevideosubsystem.

SDL_INIT_CDROM Initializes thecdromsubsystem.

SDL_INIT_JOYSTICK Initializes thejoysticksubsystem.

SDL_INIT_EVERYTHING Initialize all of the above.

SDL_INIT_NOPARACHUTE Prevents SDL from catching fatal signals.

SDL_INIT_EVENTTHREAD

39

SDL_Init

Return Value
Returns -1 on an error or 0 on success.

See Also
SDL_Quit , SDL_InitSubSystem

40

SDL_InitSubSystem

Name
SDL_InitSubSystem — Initialize subsystems

Synopsis

#include "SDL.h"
int SDL_InitSubSystem (Uint32 flags);

Description
After SDL has been initialized withSDL_Init you may initialize uninitialized subsystems with
SDL_InitSubSystem . Theflags parameter is the same as that used inSDL_Init .

Examples

/* Seperating Joystick and Video initialization. */
SDL_Init(SDL_INIT_VIDEO);
.
.
SDL_SetVideoMode(640, 480, 16, SDL_DOUBLEBUF|SDL_FULLSCREEN);
.
/* Do Some Video stuff */
.
.
/* Initialize the joystick subsystem */
SDL_InitSubSystem(SDL_INIT_JOYSTICK);

/* Do some stuff with video and joystick */
.
.
.
/* Shut them both down */
SDL_Quit();

41

SDL_InitSubSystem

Return Value
Returns -1 on an error or 0 on success.

See Also
SDL_Init , SDL_Quit , SDL_QuitSubSystem

42

SDL_QuitSubSystem

Name
SDL_QuitSubSystem — Shut down a subsystem

Synopsis

#include "SDL.h"
void SDL_QuitSubSystem (Uint32 flags);

Description
SDL_QuitSubSystem allows you to shut down a subsystem that has been previously initialized by
SDL_Init or SDL_InitSubSystem . Theflags tells SDL_QuitSubSystem which subsystems to
shut down, it uses the same values that are passed toSDL_Init .

See Also
SDL_Quit , SDL_Init , SDL_InitSubSystem

43

SDL_Quit

Name
SDL_Quit — Shut down SDL

Synopsis

#include "SDL.h"
void SDL_Quit (void);

Description
SDL_Quit shuts down all SDL subsystems and frees the resources allocated to them. This should
always be called before you exit. For the sake of simplicity you can setSDL_Quit as youratexit

call, like:

SDL_Init(SDL_INIT_VIDEO|SDL_INIT_AUDIO);
atexit(SDL_Quit);
.
.

Note: While using atexit maybe be fine for small programs, more advanced users should shut
down SDL in their own cleanup code. Plus, using atexit in a library is a sure way to crash
dynamically loaded code

See Also
SDL_QuitSubsystem , SDL_Init

44

SDL_WasInit

Name
SDL_WasInit — Check which subsystems are initialized

Synopsis

#include "SDL.h"
Uint32 SDL_WasInit (Uint32 flags);

Description
SDL_WasInit allows you to see which SDL subsytems have beeninitialized. flags is a bitwise
OR’d combination of the subsystems you wish to check (seeSDL_Init for a list of subsystem flags).

Return Value
SDL_WasInit returns a bitwised OR’d combination of the initialized subsystems.

Examples

/* Here are several ways you can use SDL_WasInit() */

/* Get init data on all the subsystems */
Uint32 subsystem_init;

subsystem_init=SDL_WasInit(SDL_INIT_EVERYTHING);

if(subsystem_init&SDL_INIT_VIDEO)
printf("Video is initialized.\n");

else
printf("Video is not initialized.\n");

/* Just check for one specfic subsystem */

if(SDL_WasInit(SDL_INIT_VIDEO)!=0)

45

SDL_WasInit

printf("Video is initialized.\n");
else

printf("Video is not initialized.\n");

/* Check for two subsystems */

Uint32 subsystem_mask=SDL_INIT_VIDEO|SDL_INIT_AUDIO;

if(SDL_WasInit(subsystem_mask)==subsystem_mask)
printf("Video and Audio initialized.\n");

else
printf("Video and Audio not initialized.\n");

See Also
SDL_Init , SDL_Subsystem

46

Chapter 6. Video
SDL presents a very simple interface to the display framebuffer. The framebuffer is represented as an
offscreen surface to which you can write directly. If you want the screen to show what you have
written, call theupdatefunction which will guarantee that the desired portion of the screen is
updated.

Before you call any of the SDL video functions, you must first call SDL_Init(SDL_INIT_VIDEO),
which initializes the video and events in the SDL library. Check the return code, which should be 0,
to see if there were any errors in starting up.

If you use both sound and video in your application, you need to call SDL_Init(SDL_INIT_AUDIO |
SDL_INIT_VIDEO) before opening the sound device, otherwise under Win32 DirectX, you won’t
be able to set full-screen display modes.

After you have initialized the library, you can start up the video display in a number of ways. The
easiest way is to pick a common screen resolution and depth and just initialize the video, checking
for errors. You will probably get what you want, but SDL may be emulating your requested mode
and converting the display on update. The best way is toquery, for the best video mode closest to the
desired one, and thenconvertyour images to that pixel format.

SDL currently supports any bit depth>= 8 bits per pixel. 8 bpp formats are considered 8-bit
palettized modes, while 12, 15, 16, 24, and 32 bits per pixel are considered "packed pixel" modes,
meaning each pixel contains the RGB color components packed in the bits of the pixel.

After you have initialized your video mode, you can take the surface that was returned, and write to
it like any other framebuffer, calling the update routine as you go.

When you have finished your video access and are ready to quit your application, you should call
"SDL_Quit()" to shutdown the video and events.

SDL_GetVideoSurface

Name
SDL_GetVideoSurface — returns a pointer to the current display surface

Synopsis

#include "SDL.h"
SDL_Surface * SDL_GetVideoSurface (void);

47

SDL_GetVideoSurface

Description
This function returns a pointer to the current display surface. If SDL is doing format conversion on
the display surface, this function returns the publicly visible surface, not the real video surface.

See Also
SDL_Surface

48

SDL_GetVideoInfo

Name
SDL_GetVideoInfo — returns a pointer to information about the video hardware

Synopsis

#include "SDL.h"
SDL_VideoInfo * SDL_GetVideoInfo (void);

Description
This function returns a read-only pointer toinformationabout the video hardware. If this is called
beforeSDL_SetVideoMode, thevfmt member of the returned structure will contain the pixel
format of the "best" video mode.

See Also
SDL_SetVideoMode , SDL_VideoInfo

49

SDL_VideoDriverName

Name
SDL_VideoDriverName — Obtain the name of the video driver

Synopsis

#include "SDL.h"
char * SDL_VideoDriverName (char *namebuf, int maxlen);

Description
The buffer pointed to bynamebuf is filled up to a maximum ofmaxlen characters (include the
NULL terminator) with the name of the initialised video driver. The driver name is a simple one
word identifier like "x11" or "windib".

Return Value
ReturnsNULL if video has not been initialised withSDL_Init or a pointer tonamebuf otherwise.

See Also
SDL_Init SDL_InitSubSystem

50

SDL_ListModes

Name
SDL_ListModes — Returns a pointer to an array of available screen dimensions for the given
format and video flags

Synopsis

#include "SDL.h"
SDL_Rect ** SDL_ListModes (SDL_PixelFormat *format, Uint32 flags);

Description
Return a pointer to an array of available screen dimensions for the given format and video flags,
sorted largest to smallest. ReturnsNULL if there are no dimensions available for a particular format,
or -1 if any dimension is okay for the given format.

If format is NULL, the mode list will be for the format returned bySDL_GetVideoInfo()->vfmt .
Theflag parameter is an OR’d combination ofsurfaceflags. The flags are the same as those used
SDL_SetVideoMode and they play a strong role in deciding what modes are valid. For instance, if
you passSDL_HWSURFACEas a flag only modes that support hardware video surfaces will be
returned.

Example

SDL_Rect **modes;
int i;
.
.
.

/* Get available fullscreen/hardware modes */
modes=SDL_ListModes(NULL, SDL_FULLSCREEN|SDL_HWSURFACE);

/* Check is there are any modes available */
if(modes == (SDL_Rect **)0){

printf("No modes available!\n");
exit(-1);

}

51

SDL_ListModes

/* Check if or resolution is restricted */
if(modes == (SDL_Rect **)-1){

printf("All resolutions available.\n");
}
else{

/* Print valid modes */
printf("Available Modes\n");
for(i=0;modes[i];++i)

printf(" %d x %d\n", modes[i]->w, modes[i]->h);
}
.
.

See Also
SDL_SetVideoMode , SDL_GetVideoInfo , SDL_Rect, SDL_PixelFormat

52

SDL_VideoModeOK

Name
SDL_VideoModeOK — Check to see if a particular video mode is supported.

Synopsis

#include "SDL.h"
int SDL_VideoModeOK(int width, int height, int bpp, Uint32 flags);

Description
SDL_VideoModeOK returns 0 if the requested mode is not supported under any bit depth, or returns
the bits-per-pixel of the closest available mode with the given width, height and requestedsurface
flags (seeSDL_SetVideoMode).

The bits-per-pixel value returned is only a suggested mode. You can usually request and bpp you
want whensettingthe video mode and SDL will emulate that color depth with a shadow video
surface.

The arguments toSDL_VideoModeOK are the same ones you would pass toSDL_SetVideoMode

Example

SDL_Surface *screen;
Uint32 bpp;
.
.
.
printf("Checking mode 640x480@16bpp.\n");
bpp=SDL_VideoModeOK(640, 480, 16, SDL_HWSURFACE);

if(!bpp){
printf("Mode not available.\n");
exit(-1);

}

printf("SDL Recommends 640x480@%dbpp.\n", bpp);
screen=SDL_SetVideoMode(640, 480, bpp, SDL_HWSURFACE);
.

53

SDL_VideoModeOK

.

See Also
SDL_SetVideoMode , SDL_GetVideoInfo

54

SDL_SetVideoMode

Name
SDL_SetVideoMode — Set up a video mode with the specified width, height and bits-per-pixel.

Synopsis

#include "SDL.h"
SDL_Surface * SDL_SetVideoMode (int width, int height, int bpp, Uint32
flags);

Description
Set up a video mode with the specified width, height and bits-per-pixel.

If bpp is 0, it is treated as the current display bits per pixel.

Theflags parameter is the same as theflags field of theSDL_Surfacestructure. OR’d
combinations of the following values are valid.

SDL_SWSURFACE Create the video surface in system memory

SDL_HWSURFACE Create the video surface in video memory

SDL_ASYNCBLIT Enables the use of asynchronous to the display
surface. This will usually slow down blitting on
single CPU machines, but may provide a speed
increase on SMP systems.

SDL_ANYFORMAT Normally, if a video surface of the requested
depth (bpp) is not available, SDL will emulate
one with a shadow surface. Passing
SDL_ANYFORMATprevents this and causes SDL to
use the video surface, regardless of its depth.

SDL_HWPALETTE Give SDL exclusive palette access. Without this
flag you may not always get the the colors you
request withSDL_SetColors .

55

SDL_SetVideoMode

SDL_DOUBLEBUF Enable double buffering; only valid with
SDL_HWSURFACE. CallingSDL_Flip will flip
the buffers and update the screen. If double
buffering could not be enabled thenSDL_Flip

will just perform aSDL_UpdateRect on the
entire screen.

SDL_FULLSCREEN SDL will attempt to use a fullscreen mode

SDL_OPENGL Create an OpenGL rendering context. You should
have previously set OpenGL video attributes with
SDL_GL_SetAttribute .

SDL_OPENGLBLIT Create an OpenGL rendering context, like above,
but allow normal blitting operations.

SDL_RESIZABLE Create a resizable window. When the window is
resized by the user aSDL_VIDEORESIZEevent is
generated andSDL_SetVideoMode can be called
again with the new size.

SDL_NOFRAME If possible,SDL_NOFRAMEcauses SDL to create a
window with no title bar or frame decoration.
Fullscreen modes automatically have this flag set.

Note: Whatever flags SDL_SetVideoMode could satisfy are set in the flags member of the
returned surface.

Return Value
The framebuffer surface, or NULL if it fails.

See Also
SDL_LockSurface , SDL_SetColors , SDL_Flip , SDL_Surface

56

SDL_UpdateRect

Name
SDL_UpdateRect — Makes sure the given area is updated on the given screen.

Synopsis

#include "SDL.h"
void SDL_UpdateRect (SDL_Surface *screen, Sint32 x, Sint32 y, Sint32 w,
Sint32 h);

Description
Makes sure the given area is updated on the given screen.

If ’ x ’, ’ y ’, ’ w’ and ’h’ are all 0,SDL_UpdateRect will update the entire screen.

This function should not be called while ’screen ’ is locked.

See Also
SDL_UpdateRects , SDL_Rect, SDL_Surface, SDL_LockSurface

57

SDL_UpdateRects

Name
SDL_UpdateRects — Makes sure the given list of rectangles is updated on the given screen.

Synopsis

#include "SDL.h"
void SDL_UpdateRects (SDL_Surface *screen, int numrects, SDL_Rect *rects);

Description
Makes sure the given list of rectangles is updated on the given screen.

This function should not be called whilescreen is locked.

Note: It is adviced to call this function only once per frame, since each call has some processing
overhead. This is no restriction since you can pass any number of rectangles each time.

The rectangles are not automatically merged or checked for overlap. In general, the programmer
can use his knowledge about his particular rectangles to merge them in an efficient way, to avoid
overdraw.

See Also
SDL_UpdateRect , SDL_Rect, SDL_Surface, SDL_LockSurface

58

SDL_Flip

Name
SDL_Flip — Swaps screen buffers

Synopsis

#include "SDL.h"
int SDL_Flip (SDL_Surface *screen);

Description
On hardware that supports double-buffering, this function sets up a flip and returns. The hardware
will wait for vertical retrace, and then swap video buffers before the next video surface blit or lock
will return. On hardware that doesn’t support double-buffering, this is equivalent to calling
SDL_UpdateRect(screen, 0, 0, 0, 0)

TheSDL_DOUBLEBUFflag must have been passed toSDL_SetVideoMode, when setting the video
mode for this function to perform hardware flipping.

Return Value
This function returns 0 if successful, or -1 if there was an error.

See Also
SDL_SetVideoMode , SDL_UpdateRect , SDL_Surface

59

SDL_SetColors

Name
SDL_SetColors — Sets a portion of the colormap for the given 8-bit surface.

Synopsis

#include "SDL.h"
int SDL_SetColors (SDL_Surface *surface, SDL_Color *colors, int firstcolor,
int ncolors);

Description
Sets a portion of the colormap for the given 8-bit surface.

Whensurface is the surface associated with the current display, the display colormap will be
updated with the requested colors. IfSDL_HWPALETTEwas set inSDL_SetVideoModeflags,
SDL_SetColors will always return 1, and the palette is guaranteed to be set the way you desire,
even if the window colormap has to be warped or run under emulation.

The color components of aSDL_Colorstructure are 8-bits in size, giving you a total of 2563

=16777216 colors.

Palettized (8-bit) screen surfaces with theSDL_HWPALETTEflag have two palettes, a logical palette
that is used for mapping blits to/from the surface and a physical palette (that determines how the
hardware will map the colors to the display).SDL_SetColors modifies both palettes (if present),
and is equivalent to callingSDL_SetPalettewith theflags set to(SDL_LOGPAL |

SDL_PHYSPAL).

Return Value
If surface is not a palettized surface, this function does nothing, returning 0. If all of the colors
were set as passed toSDL_SetColors , it will return 1. If not all the color entries were set exactly as
given, it will return 0, and you should look at the surface palette to determine the actual color palette.

Example

/* Create a display surface with a grayscale palette */

60

SDL_SetColors

SDL_Surface *screen;
SDL_Color colors[256];
int i;
.
.
.
/* Fill colors with color information */
for(i=0;i<256;i++){

colors[i].r=i;
colors[i].g=i;
colors[i].b=i;

}

/* Create display */
screen=SDL_SetVideoMode(640, 480, 8, SDL_HWPALETTE);
if(!screen){

printf("Couldn’t set video mode: %s\n", SDL_GetError());
exit(-1);

}

/* Set palette */
SDL_SetColors(screen, colors, 0, 256);
.
.
.
.

See Also
SDL_ColorSDL_Surface, SDL_SetPalette , SDL_SetVideoMode

61

SDL_SetPalette

Name
SDL_SetPalette — Sets the colors in the palette of an 8-bit surface.

Synopsis

#include "SDL.h"
int SDL_SetPalette (SDL_Surface *surface, int flags, SDL_Color *colors, int
firstcolor, int ncolors);

Description
Sets a portion of the palette for the given 8-bit surface.

Palettized (8-bit) screen surfaces with theSDL_HWPALETTEflag have two palettes, a logical palette
that is used for mapping blits to/from the surface and a physical palette (that determines how the
hardware will map the colors to the display).SDL_BlitSurfacealways uses the logical palette when
blitting surfaces (if it has to convert between surface pixel formats). Because of this, it is often useful
to modify only one or the other palette to achieve various special color effects (e.g., screen fading,
color flashes, screen dimming).

This function can modify either the logical or physical palette by specifingSDL_LOGPALor
SDL_PHYSPALthe in theflags parameter.

Whensurface is the surface associated with the current display, the display colormap will be
updated with the requested colors. IfSDL_HWPALETTEwas set inSDL_SetVideoModeflags,
SDL_SetPalette will always return 1, and the palette is guaranteed to be set the way you desire,
even if the window colormap has to be warped or run under emulation.

The color components of aSDL_Colorstructure are 8-bits in size, giving you a total of
2563=16777216 colors.

Return Value
If surface is not a palettized surface, this function does nothing, returning 0. If all of the colors
were set as passed toSDL_SetPalette , it will return 1. If not all the color entries were set exactly
as given, it will return 0, and you should look at the surface palette to determine the actual color
palette.

62

SDL_SetPalette

Example

/* Create a display surface with a grayscale palette */
SDL_Surface *screen;
SDL_Color colors[256];
int i;
.
.
.
/* Fill colors with color information */
for(i=0;i<256;i++){

colors[i].r=i;
colors[i].g=i;
colors[i].b=i;

}

/* Create display */
screen=SDL_SetVideoMode(640, 480, 8, SDL_HWPALETTE);
if(!screen){

printf("Couldn’t set video mode: %s\n", SDL_GetError());
exit(-1);

}

/* Set palette */
SDL_SetPalette(screen, SDL_LOGPAL|SDL_PHYSPAL, colors, 0, 256);
.
.
.
.

See Also
SDL_SetColors, SDL_SetVideoMode, SDL_Surface, SDL_Color

63

SDL_SetGamma

Name
SDL_SetGamma— Sets the color gamma function for the display

Synopsis

#include "SDL.h"
int SDL_SetGamma(float redgamma, float greengamma, float bluegamma);

Description
Sets the "gamma function" for the display of each color component. Gamma controls the
brightness/contrast of colors displayed on the screen. A gamma value of1.0 is identity (i.e., no
adjustment is made).

This function adjusts the gamma based on the "gamma function" parameter, you can directly specify
lookup tables for gamma adjustment withSDL_SetGammaRamp.

Not all display hardware is able to change gamma.

Return Value
Returns -1 on error (or if gamma adjustment is not supported).

See Also
SDL_GetGammaRampSDL_SetGammaRamp

64

SDL_GetGammaRamp

Name
SDL_GetGammaRamp— Gets the color gamma lookup tables for the display

Synopsis

#include "SDL.h"
int SDL_GetGammaRamp(Uint16 *redtable, Uint16 *greentable, Uint16
*bluetable);

Description
Gets the gamma translation lookup tables currently used by the display. Each table is an array of 256
Uint16 values.

Not all display hardware is able to change gamma.

Return Value
Returns -1 on error.

See Also
SDL_SetGammaSDL_SetGammaRamp

65

SDL_SetGammaRamp

Name
SDL_SetGammaRamp— Sets the color gamma lookup tables for the display

Synopsis

#include "SDL.h"
int SDL_SetGammaRamp(Uint16 *redtable, Uint16 *greentable, Uint16
*bluetable);

Description
Sets the gamma lookup tables for the display for each color component. Each table is an array of 256
Uint16 values, representing a mapping between the input and output for that channel. The input is
the index into the array, and the output is the 16-bit gamma value at that index, scaled to the output
color precision. You may pass NULL to any of the channels to leave them unchanged.

This function adjusts the gamma based on lookup tables, you can also have the gamma calculated
based on a "gamma function" parameter withSDL_SetGamma.

Not all display hardware is able to change gamma.

Return Value
Returns -1 on error (or if gamma adjustment is not supported).

See Also
SDL_SetGammaSDL_GetGammaRamp

66

SDL_MapRGB

Name
SDL_MapRGB— Map a RGB color value to a pixel format.

Synopsis

#include "SDL.h"
Uint32 SDL_MapRGB(SDL_PixelFormat *fmt, Uint8 r, Uint8 g, Uint8 b);

Description
Maps the RGB color value to the specified pixel format and returns the pixel value as a 32-bit int.

If the format has a palette (8-bit) the index of the closest matching color in the palette will be
returned.

If the specified pixel format has an alpha component it will be returned as all 1 bits (fully opaque).

Return Value
A pixel value best approximating the given RGB color value for a given pixel format. If the pixel
format bpp (color depth) is less than 32-bpp then the unused upper bits of the return value can safely
be ignored (e.g., with a 16-bpp format the return value can be assigned to a Uint16, and similarly a
Uint8 for an 8-bpp format).

See Also
SDL_GetRGB, SDL_GetRGBA, SDL_MapRGBA, SDL_PixelFormat

67

SDL_MapRGBA

Name
SDL_MapRGBA— Map a RGBA color value to a pixel format.

Synopsis

#include "SDL.h"
Uint32 SDL_MapRGBA(SDL_PixelFormat *fmt, Uint8 r, Uint8 g, Uint8 b, Uint8
a);

Description
Maps the RGBA color value to the specified pixel format and returns the pixel value as a 32-bit int.

If the format has a palette (8-bit) the index of the closest matching color in the palette will be
returned.

If the specified pixel format has no alpha component the alpha value will be ignored (as it will be in
formats with a palette).

Return Value
A pixel value best approximating the given RGBA color value for a given pixel format. If the pixel
format bpp (color depth) is less than 32-bpp then the unused upper bits of the return value can safely
be ignored (e.g., with a 16-bpp format the return value can be assigned to a Uint16, and similarly a
Uint8 for an 8-bpp format).

See Also
SDL_GetRGB, SDL_GetRGBA, SDL_MapRGB, SDL_PixelFormat

68

SDL_GetRGB

Name
SDL_GetRGB— Get RGB values from a pixel in the specified pixel format.

Synopsis

#include "SDL.h"
void SDL_GetRGB(Uint32 pixel, SDL_PixelFormat *fmt, Uint8 *r, Uint8 *g,
Uint8 *b);

Description
Get RGB component values from a pixel stored in the specified pixel format.

This function uses the entire 8-bit [0..255] range when converting color components from pixel
formats with less than 8-bits per RGB component (e.g., a completely white pixel in 16-bit RGB565
format would return [0xff, 0xff, 0xff] not [0xf8, 0xfc, 0xf8]).

See Also
SDL_GetRGBA, SDL_MapRGB, SDL_MapRGBA, SDL_PixelFormat

69

SDL_GetRGBA

Name
SDL_GetRGBA— Get RGBA values from a pixel in the specified pixel format.

Synopsis

#include "SDL.h"
void SDL_GetRGBA(Uint32 pixel, SDL_PixelFormat *fmt, Uint8 *r, Uint8 *g,
Uint8 *b, Uint8 *a);

Description
Get RGBA component values from a pixel stored in the specified pixel format.

This function uses the entire 8-bit [0..255] range when converting color components from pixel
formats with less than 8-bits per RGB component (e.g., a completely white pixel in 16-bit RGB565
format would return [0xff, 0xff, 0xff] not [0xf8, 0xfc, 0xf8]).

If the surface has no alpha component, the alpha will be returned as 0xff (100% opaque).

See Also
SDL_GetRGB, SDL_MapRGB, SDL_MapRGBA, SDL_PixelFormat

70

SDL_CreateRGBSurface

Name
SDL_CreateRGBSurface — Create an empty SDL_Surface

Synopsis

#include "SDL.h"
SDL_Surface * SDL_CreateRGBSurface (Uint32 flags, int width, int height, int
depth, Uint32 Rmask, Uint32 Gmask, Uint32 Bmask, Uint32 Amask);

Description
Allocate an empty surface (must be called afterSDL_SetVideoMode)

If depth is 8 bits an empty palette is allocated for the surface, otherwise a ’packed-pixel’
SDL_PixelFormatis created using the[RGBA]mask ’s provided (seeSDL_PixelFormat). The
flags specifies the type of surface that should be created, it is an OR’d combination of the
following possible values.

SDL_SWSURFACE SDL will create the surface in system memory.
This improves the performance of pixel level
access, however you may not be able to take
advantage of some types of hardware blitting.

SDL_HWSURFACE SDL will attempt to create the surface in video
memory. This will allow SDL to take advantage of
Video->Video blits (which are often accelerated).

SDL_SRCCOLORKEY With this flag SDL will attempt to find the best
location for this surface, either in system memory
or video memory, to obtain hardware colorkey
blitting support.

SDL_SRCALPHA With this flag SDL will attempt to find the best
location for this surface, either in system memory
or video memory, to obtain hardware alpha
support

71

SDL_CreateRGBSurface

See Also
SDL_CreateRGBSurfaceFrom , SDL_FreeSurface , SDL_SetVideoMode , SDL_LockSurface ,
SDL_PixelFormat, SDL_Surface

72

SDL_CreateRGBSurfaceFrom

Name
SDL_CreateRGBSurfaceFrom — Create an SDL_Surface from pixel data

Synopsis

#include "SDL.h"
SDL_Surface * SDL_CreateRGBSurfaceFrom (void *pixels, int width, int height,
int depth, int pitch, Uint32 Rmask, Uint32 Gmask, Uint32 Bmask, Uint32
Amask);

Description
Creates an SDL_Surface from the provided pixel data.

The data stored inpixels is assumed to be of thedepth specified in the parameter list. The pixel
data is not copied into the SDL_Surface structure so it should no be freed until the surface has been
freed with a called toSDL_FreeSurface. pitch is the length of each scanline in bytes.

SeeSDL_CreateRGBSurface for a more detailed description of the other parameters.

See Also
SDL_CreateRGBSurface , SDL_FreeSurface

73

SDL_FreeSurface

Name
SDL_FreeSurface — Frees (deletes) a SDL_Surface

Synopsis

#include "SDL.h"
void SDL_FreeSurface (SDL_Surface *surface);

Description
Frees the resources used by a previously created SDL_Surface. If the surface was created using
SDL_CreateRGBSurfaceFromthen the pixel data is not freed.

See Also
SDL_CreateRGBSurface SDL_CreateRGBSurfaceFrom

74

SDL_LockSurface

Name
SDL_LockSurface — Lock a surface for directly access.

Synopsis

#include "SDL.h"
int SDL_LockSurface (SDL_Surface *surface);

Description
SDL_LockSurface sets up a surface for directly accessing the pixels. Between calls to
SDL_LockSurface andSDL_UnlockSurface , you can write to and read from
surface->pixels , using the pixel format stored insurface->format . Once you are done
accessing the surface, you should useSDL_UnlockSurface to release it.

Not all surfaces require locking. IfSDL_MUSTLOCK(surface) evaluates to 0, then you can read and
write to the surface at any time, and the pixel format of the surface will not change.

No operating system or library calls should be made between lock/unlock pairs, as critical system
locks may be held during this time.

It should be noted, that since SDL 1.1.8 surface locks are recursive. This means that you can lock a
surface multiple times, but each lock must have a match unlock.

.

.
SDL_LockSurface(surface);
.
/* Surface is locked */
/* Direct pixel access on surface here */
.
SDL_LockSurface(surface);
.
/* More direct pixel access on surface */
.
SDL_UnlockSurface(surface);
/* Surface is still locked */
/* Note: Is versions < 1.1.8, the surface would have been */
/* no longer locked at this stage */
.

75

SDL_LockSurface

SDL_UnlockSurface(surface);
/* Surface is now unlocked */
.
.

Return Value
SDL_LockSurface returns 0, or -1 if the surface couldn’t be locked.

See Also
SDL_UnlockSurface

76

SDL_UnlockSurface

Name
SDL_UnlockSurface — Unlocks a previously locked surface.

Synopsis

#include "SDL.h"
void SDL_UnlockSurface (SDL_Surface *surface);

Description
Surfaces that were previously locked usingSDL_LockSurface must be unlocked with
SDL_UnlockSurface . Surfaces should be unlocked as soon as possible.

It should be noted that since 1.1.8, surface locks are recursive. SeeSDL_LockSurface .

See Also
SDL_LockSurface

77

SDL_LoadBMP

Name
SDL_LoadBMP— Load a Windows BMP file into an SDL_Surface.

Synopsis

#include "SDL.h"
SDL_Surface * SDL_LoadBMP(const char *file);

Description
Loads a surface from a named Windows BMP file.

Return Value
Returns the new surface, orNULL if there was an error.

See Also
SDL_SaveBMP

78

SDL_SaveBMP

Name
SDL_SaveBMP— Save an SDL_Surface as a Windows BMP file.

Synopsis

#include "SDL.h"
int SDL_SaveBMP(SDL_Surface *surface, const char *file);

Description
Saves the SDL_Surfacesurface as a Windows BMP file namedfile .

Return Value
Returns 0 if successful or -1 if there was an error.

See Also
SDL_LoadBMP

79

SDL_SetColorKey

Name
SDL_SetColorKey — Sets the color key (transparent pixel) in a blittable surface and RLE
acceleration.

Synopsis

#include "SDL.h"
int SDL_SetColorKey (SDL_Surface *surface, Uint32 flag, Uint32 key);

Description
Sets the color key (transparent pixel) in a blittable surface and enables or disables RLE blit
acceleration.

RLE acceleration can substantially speed up blitting of images with large horizontal runs of
transparent pixels (i.e., pixels that match thekey value). Thekey must be of the same pixel format
as thesurface , SDL_MapRGBis often useful for obtaining an acceptable value.

If flag is SDL_SRCCOLORKEYthenkey is the transparent pixel value in the source image of a blit.

If flag is OR’d with SDL_RLEACCELthen the surface will be draw using RLE acceleration when
drawn withSDL_BlitSurface. The surface will actually be encoded for RLE acceleration the first
timeSDL_BlitSurfaceor SDL_DisplayFormatis called on the surface.

If flag is 0, this function clears any current color key.

Return Value
This function returns 0, or -1 if there was an error.

See Also
SDL_BlitSurface , SDL_DisplayFormat , SDL_MapRGB, SDL_SetAlpha

80

SDL_SetAlpha

Name
SDL_SetAlpha — Adjust the alpha properties of a surface

Synopsis

#include "SDL.h"
int SDL_SetAlpha (SDL_Surface *surface, Uint32 flag, Uint8 alpha);

Description

Note: This function and the semantics of SDL alpha blending have changed since version 1.1.4.
Up until version 1.1.5, an alpha value of 0 was considered opaque and a value of 255 was
considered transparent. This has now been inverted: 0 (SDL_ALPHA_TRANSPARENT) is now
considered transparent and 255 (SDL_ALPHA_OPAQUE) is now considered opaque.

SDL_SetAlpha is used for setting the per-surface alpha value and/or enabling and disabling alpha
blending.

Thesurface parameter specifies which surface whose alpha attributes you wish to adjust.flags
is used to specify whether alpha blending should be used (SDL_SRCALPHA) and whether the surface
should use RLE acceleration for blitting (SDL_RLEACCEL). flags can be an OR’d combination of
these two options, one of these options or 0. IfSDL_SRCALPHAis not passed as a flag then all alpha
information is ignored when blitting the surface. Thealpha parameter is the per-surface alpha
value; a surface need not have an alpha channel to use per-surface alpha and blitting can still be
accelerated withSDL_RLEACCEL.

Note: The per-surface alpha value of 128 is considered a special case and is optimised, so it’s
much faster than other per-surface values.

Alpha effects surface blitting in the following ways:

RGBA->RGB withSDL_SRCALPHA The source is alpha-blended with the destination,
using the alpha channel.SDL_SRCCOLORKEYand
the per-surface alpha are ignored.

81

SDL_SetAlpha

RGBA->RGB withoutSDL_SRCALPHA The RGB data is copied from the source. The
source alpha channel and the per-surface alpha
value are ignored.

RGB->RGBA withSDL_SRCALPHA The source is alpha-blended with the destination
using the per-surface alpha value. If
SDL_SRCCOLORKEYis set, only the pixels not
matching the colorkey value are copied. The alpha
channel of the copied pixels is set to opaque.

RGB->RGBA withoutSDL_SRCALPHA The RGB data is copied from the source and the
alpha value of the copied pixels is set to opaque. If
SDL_SRCCOLORKEYis set, only the pixels not
matching the colorkey value are copied.

RGBA->RGBA withSDL_SRCALPHA The source is alpha-blended with the destination
using the source alpha channel. The alpha channel
in the destination surface is left untouched.
SDL_SRCCOLORKEYis ignored.

RGBA->RGBA withoutSDL_SRCALPHA The RGBA data is copied to the destination
surface. IfSDL_SRCCOLORKEYis set, only the
pixels not matching the colorkey value are copied.

RGB->RGB withSDL_SRCALPHA The source is alpha-blended with the destination
using the per-surface alpha value. If
SDL_SRCCOLORKEYis set, only the pixels not
matching the colorkey value are copied.

RGB->RGB withoutSDL_SRCALPHA The RGB data is copied from the source. If
SDL_SRCCOLORKEYis set, only the pixels not
matching the colorkey value are copied.

Note: Note that RGBA->RGBA blits (with SDL_SRCALPHA set) keep the alpha of the
destination surface. This means that you cannot compose two arbitrary RGBA surfaces this way
and get the result you would expect from "overlaying" them; the destination alpha will work as a
mask.

Also note that per-pixel and per-surface alpha cannot be combined; the per-pixel alpha is always
used if available

Return Value
This function returns 0, or -1 if there was an error.

82

SDL_SetAlpha

See Also
SDL_MapRGBA, SDL_GetRGBA, SDL_DisplayFormatAlpha , SDL_BlitSurface

83

SDL_SetClipRect

Name
SDL_SetClipRect — Sets the clipping rectangle for a surface.

Synopsis

#include "SDL.h"
void SDL_SetClipRect (SDL_Surface *surface, SDL_Rect *rect);

Description
Sets the clipping rectangle for a surface. When this surface is the destination of a blit, only the area
within the clip rectangle will be drawn into.

The rectangle pointed to byrect will be clipped to the edges of the surface so that the clip
rectangle for a surface can never fall outside the edges of the surface.

If rect is NULL the clipping rectangle will be set to the full size of the surface.

See Also
SDL_GetClipRect , SDL_BlitSurface , SDL_Surface

84

SDL_GetClipRect

Name
SDL_GetClipRect — Gets the clipping rectangle for a surface.

Synopsis

#include "SDL.h"
void SDL_GetClipRect (SDL_Surface *surface, SDL_Rect *rect);

Description
Gets the clipping rectangle for a surface. When this surface is the destination of a blit, only the area
within the clip rectangle is drawn into.

The rectangle pointed to byrect will be filled with the clipping rectangle of the surface.

See Also
SDL_SetClipRect , SDL_BlitSurface , SDL_Surface

85

SDL_ConvertSurface

Name
SDL_ConvertSurface — Converts a surface to the same format as another surface.

Synopsis

#include "SDL.h"
SDL_Surface * SDL_ConvertSurface (SDL_Surface *src, SDL_PixelFormat *fmt,
Uint32 flags);

Description
Creates a new surface of the specified format, and then copies and maps the given surface to it. If this
function fails, it returnsNULL.

Theflags parameter is passed toSDL_CreateRGBSurface and has those semantics.

This function is used internally bySDL_DisplayFormat .

Return Value
Returns either a pointer to the new surface, orNULLon error.

See Also
SDL_CreateRGBSurface , SDL_DisplayFormat , SDL_PixelFormat, SDL_Surface

86

SDL_BlitSurface

Name
SDL_BlitSurface — This performs a fast blit from the source surface to the destination surface.

Synopsis

#include "SDL.h"
int SDL_BlitSurface (SDL_Surface *src, SDL_Rect *srcrect, SDL_Surface *dst,
SDL_Rect *dstrect);

Description
This performs a fast blit from the source surface to the destination surface.

Only the position is used in thedstrect (the width and height are ignored).

If eithersrcrect or dstrect areNULL, the entire surface (src or dst) is copied.

The final blit rectangle is saved indstrect after all clipping is performed (srcrect is not
modified).

The blit function should not be called on a locked surface.

The results of blitting operations vary greatly depending on whetherSDL_SRCAPLHAis set or not.
SeeSDL_SetAlphafor an explaination of how this effects your results. Colorkeying and alpha
attributes also interact with surface blitting, as the following pseudo-code should hopefully explain.

if (source surface has SDL_SRCALPHA set) {
if (source surface has alpha channel (that is, format->Amask != 0))

blit using per-pixel alpha, ignoring any colour key
else {

if (source surface has SDL_SRCCOLORKEY set)
blit using the colour key AND the per-surface alpha value

else
blit using the per-surface alpha value

}
} else {

if (source surface has SDL_SRCCOLORKEY set)
blit using the colour key

else
ordinary opaque rectangular blit

}

87

SDL_BlitSurface

Return Value
If the blit is successful, it returns 0, otherwise it returns -1.

If either of the surfaces were in video memory, and the blit returns -2, the video memory was lost, so
it should be reloaded with artwork and re-blitted:

while (SDL_BlitSurface(image, imgrect, screen, dstrect) == -2) {
while (SDL_LockSurface(image)) < 0)

Sleep(10);
-- Write image pixels to image->pixels --
SDL_UnlockSurface(image);

}

This happens under DirectX 5.0 when the system switches away from your fullscreen application.
Locking the surface will also fail until you have access to the video memory again.

See Also
SDL_LockSurface , SDL_FillRect , SDL_Surface, SDL_Rect

88

SDL_FillRect

Name
SDL_FillRect — This function performs a fast fill of the given rectangle with some color

Synopsis

#include "SDL.h"
int SDL_FillRect (SDL_Surface *dst, SDL_Rect *dstrect, Uint32 color);

Description
This function performs a fast fill of the given rectangle withcolor . If dstrect is NULL, the
whole surface will be filled withcolor .

The color should be a pixel of the format used by the surface, and can be generated by the
SDL_MapRGBfunction.

If there is a clip rectangle set on the destination (set viaSDL_SetClipRect) then this function will
clip based on the intersection of the clip rectangle and thedstrect rectangle.

Return Value
This function returns 0 on success, or -1 on error.

See Also
SDL_MapRGB, SDL_BlitSurface , SDL_Rect

89

SDL_DisplayFormat

Name
SDL_DisplayFormat — Convert a surface to the display format

Synopsis

#include "SDL.h"
SDL_Surface * SDL_DisplayFormat (SDL_Surface *surface);

Description
This function takes a surface and copies it to a new surface of the pixel format and colors of the
video framebuffer, suitable for fast blitting onto the display surface. It callsSDL_ConvertSurface

If you want to take advantage of hardware colorkey or alpha blit acceleration, you should set the
colorkey and alpha value before calling this function.

If you want an alpha channel, seeSDL_DisplayFormatAlpha.

Return Value
If the conversion fails or runs out of memory, it returns NULL

See Also
SDL_ConvertSurface , SDL_DisplayFormatAlpha SDL_SetAlpha , SDL_SetColorKey ,
SDL_Surface

90

SDL_DisplayFormatAlpha

Name
SDL_DisplayFormatAlpha — Convert a surface to the display format

Synopsis

#include "SDL.h"
SDL_Surface * SDL_DisplayFormatAlpha (SDL_Surface *surface);

Description
This function takes a surface and copies it to a new surface of the pixel format and colors of the
video framebuffer plus an alpha channel, suitable for fast blitting onto the display surface. It calls
SDL_ConvertSurface

If you want to take advantage of hardware colorkey or alpha blit acceleration, you should set the
colorkey and alpha value before calling this function.

This function can be used to convert a colourkey to an alpha channel, if theSDL_SRCCOLORKEYflag
is set on the surface. The generated surface will then be transparent (alpha=0) where the pixels match
the colourkey, and opaque (alpha=255) elsewhere.

Return Value
If the conversion fails or runs out of memory, it returns NULL

See Also
SDL_ConvertSurface, SDL_SetAlpha, SDL_SetColorKey, SDL_DisplayFormat, SDL_Surface

91

SDL_WarpMouse

Name
SDL_WarpMouse — Set the position of the mouse cursor.

Synopsis

#include "SDL.h"
void SDL_WarpMouse(Uint16 x, Uint16 y);

Description
Set the position of the mouse cursor (generates a mouse motion event).

See Also
SDL_MouseMotionEvent

92

SDL_CreateCursor

Name
SDL_CreateCursor — Creates a new mouse cursor.

Synopsis

#include "SDL.h"
SDL_Cursor * SDL_CreateCursor (Uint8 *data, Uint8 *mask, int w, int h, int
hot_x, int hot_y);

Description
Create a cursor using the specifieddata andmask (in MSB format). The cursor width must be a
multiple of 8 bits.

The cursor is created in black and white according to the following:

Data / Mask Resulting pixel on screen

0 / 1 White

1 / 1 Black

0 / 0 Transparent

1 / 0 Inverted color if possible, black if not.

Cursors created with this function must be freed withSDL_FreeCursor.

Example

/* Stolen from the mailing list */
/* Creates a new mouse cursor from an XPM */

/* XPM */
static const char *arrow[] = {

/* width height num_colors chars_per_pixel */
" 32 32 3 1",
/* colors */

93

SDL_CreateCursor

"X c #000000",
". c #ffffff",
" c None",
/* pixels */
"X ",
"XX ",
"X.X ",
"X..X ",
"X...X ",
"X....X ",
"X.....X ",
"X......X ",
"X.......X ",
"X........X ",
"X.....XXXXX ",
"X..X..X ",
"X.X X..X ",
"XX X..X ",
"X X..X ",
" X..X ",
" X..X ",
" X..X ",
" XX ",
" ",
" ",
" ",
" ",
" ",
" ",
" ",
" ",
" ",
" ",
" ",
" ",
" ",
"0,0"

};

static SDL_Cursor *init_system_cursor(const char *image[])
{

int i, row, col;
Uint8 data[4*32];
Uint8 mask[4*32];
int hot_x, hot_y;

i = -1;
for (row=0; row<32; ++row) {

for (col=0; col<32; ++col) {

94

SDL_CreateCursor

if (col % 8) {
data[i] <<= 1;
mask[i] <<= 1;

} else {
++i;
data[i] = mask[i] = 0;

}
switch (image[4+row][col]) {

case ’X’:
data[i] |= 0x01;
k[i] |= 0x01;
break;

case ’.’:
mask[i] |= 0x01;
break;

case ’ ’:
break;

}
}

}
sscanf(image[4+row], "%d,%d", &hot_x, &hot_y);
return SDL_CreateCursor(data, mask, 32, 32, hot_x, hot_y);

}

See Also
SDL_FreeCursor , SDL_SetCursor , SDL_ShowCursor

95

SDL_FreeCursor

Name
SDL_FreeCursor — Frees a cursor created with SDL_CreateCursor.

Synopsis

#include "SDL.h"
void SDL_FreeCursor (SDL_Cursor *cursor);

Description
Frees a SDL_Cursor that was created usingSDL_CreateCursor.

See Also
SDL_CreateCursor

96

SDL_SetCursor

Name
SDL_SetCursor — Set the currently active mouse cursor.

Synopsis

#include "SDL.h"
void * SDL_SetCursor (SDL_Cursor *cursor);

Description
Sets the currently active cursor to the specified one. If the cursor is currently visible, the change will
be immediately represented on the display.

See Also
SDL_GetCursor , SDL_CreateCursor , SDL_ShowCursor

97

SDL_GetCursor

Name
SDL_GetCursor — Get the currently active mouse cursor.

Synopsis

#include "SDL.h"
SDL_Cursor * SDL_GetCursor (void);

Description
Returns the currently active mouse cursor.

See Also
SDL_SetCursor , SDL_CreateCursor , SDL_ShowCursor

98

SDL_ShowCursor

Name
SDL_ShowCursor — Toggle whether or not the cursor is shown on the screen.

Synopsis

#include "SDL.h"
int SDL_ShowCursor (int toggle);

Description
Toggle whether or not the cursor is shown on the screen. PassingSDL_ENABLEdisplays the cursor
and passingSDL_DISABLE hides it. The current state of the mouse cursor can be queried by passing
SDL_QUERY, eitherSDL_DISABLE or SDL_ENABLEwill be returned.

The cursor starts off displayed, but can be turned off.

Return Value
Returns the current state of the cursor.

See Also
SDL_CreateCursor , SDL_SetCursor

99

SDL_GL_LoadLibrary

Name
SDL_GL_LoadLibrary — Specify an OpenGL library

Synopsis

#include "SDL.h"
int SDL_GL_LoadLibrary (const char *path);

Description
If you wish, you may load the OpenGL library at runtime, this must be done before
SDL_SetVideoMode is called. Thepath of the GL library is passed toSDL_GL_LoadLibrary

and it returns 0 on success, or -1 on an error. You must then useSDL_GL_GetProcAddress to
retrieve function pointers to GL functions.

See Also
SDL_GL_GetProcAddress

100

SDL_GL_GetProcAddress

Name
SDL_GL_GetProcAddress — Get the address of a GL function

Synopsis

#include "SDL.h"
void * SDL_GL_GetProcAddress (const char* proc);

Description
Returns the address of the GL functionproc , or NULL if the function is not found. If the GL
library is loaded at runtime, withSDL_GL_LoadLibrary , thenall GL functions must be retrieved
this way. Usually this is used to retrieve function pointers to OpenGL extensions.

Example

typedef void (*GL_ActiveTextureARB_Func)(unsigned int);
GL_ActiveTextureARB_Func glActiveTextureARB_ptr = 0;
int has_multitexture=1;
.
.
.
/* Get function pointer */
glActiveTextureARB_ptr=(GL_ActiveTextureARB_Func) SDL_GL_GetProcAddress("glActiveTextureARB");

/* Check for a valid function ptr */
if(!glActiveTextureARB_ptr){

fprintf(stderr, "Multitexture Extensions not present.\n");
has_multitexture=0;

}
.
.
.
.
if(has_multitexture){

glActiveTextureARB_ptr(GL_TEXTURE0_ARB);
.

101

SDL_GL_GetProcAddress

.
}
else{

.

.
}

See Also
SDL_GL_LoadLibrary

102

SDL_GL_GetAttribute

Name
SDL_GL_GetAttribute — Get the value of a special SDL/OpenGL attribute

Synopsis

#include "SDL.h"
int SDL_GL_GetAttribute (SDLGLattr attr, int *value);

Description
Places the value of the SDL/OpenGLattributeattr into value . This is useful after a call to
SDL_SetVideoMode to check whether your attributes have beensetas you expected.

Return Value
Returns 0 on success, or -1 on an error.

See Also
SDL_GL_SetAttribute , GL Attributes

103

SDL_GL_SetAttribute

Name
SDL_GL_SetAttribute — Set a special SDL/OpenGL attribute

Synopsis

#include "SDL.h"
int SDL_GL_SetAttribute (SDL_GLattr attr, int value);

Description
Sets the OpenGLattributeattr to value . The attributes you set don’t take effect until after a call
to SDL_SetVideoMode . You should useSDL_GL_GetAttribute to check the values after a
SDL_SetVideoMode call.

Return Value
Returns 0 on success, or -1 on error.

Example

SDL_GL_SetAttribute(SDL_GL_RED_SIZE, 5);
SDL_GL_SetAttribute(SDL_GL_GREEN_SIZE, 5);
SDL_GL_SetAttribute(SDL_GL_BLUE_SIZE, 5);
SDL_GL_SetAttribute(SDL_GL_DEPTH_SIZE, 16);
SDL_GL_SetAttribute(SDL_GL_DOUBLEBUFFER, 1);
if ((screen=SDL_SetVideoMode(640, 480, 16, SDL_OPENGL)) == NULL) {

fprintf(stderr, "Couldn’t set GL mode: %s\n", SDL_GetError());
SDL_Quit();
return;

}

Note: The SDL_DOUBLEBUFflag is not required to enable double buffering when setting an
OpenGL video mode. Double buffering is enabled or disabled using the
SDL_GL_DOUBLEBUFFER attribute.

104

SDL_GL_SetAttribute

See Also
SDL_GL_GetAttribute , GL Attributes

105

SDL_GL_SwapBuffers

Name
SDL_GL_SwapBuffers — Swap OpenGL framebuffers/Update Display

Synopsis

#include "SDL.h"
void SDL_GL_SwapBuffers (void);

Description
Swap the OpenGL buffers, if double-buffering is supported.

See Also
SDL_SetVideoMode , SDL_GL_SetAttribute

106

SDL_CreateYUVOverlay

Name
SDL_CreateYUVOverlay — Create a YUV video overlay

Synopsis

#include "SDL.h"
SDL_Overlay * SDL_CreateYUVOverlay (int width, int height, Uint32 format,
SDL_Surface *display);

Description
SDL_CreateYUVOverlay creates a YUV overlay of the specifiedwidth , height andformat
(seeSDL_Overlayfor a list of available formats), for the provideddisplay . A SDL_Overlay
structure is returned.

The term ’overlay’ is a misnomer since, unless the overlay is created in hardware, the contents for
the display surface underneath the area where the overlay is shown will be overwritten when the
overlay is displayed.

See Also
SDL_Overlay, SDL_DisplayYUVOverlay , SDL_FreeYUVOverlay

107

SDL_LockYUVOverlay

Name
SDL_LockYUVOverlay — Lock an overlay

Synopsis

#include "SDL.h"
int SDL_LockYUVOverlay (SDL_Overlay *overlay);

Description
Much the same asSDL_LockSurface , SDL_LockYUVOverlay locks theoverlay for direct
access to pixel data.

Return Value
Returns 0 on success, or -1 on an error.

See Also
SDL_UnlockYUVOverlay , SDL_CreateYUVOverlay , SDL_Overlay

108

SDL_UnlockYUVOverlay

Name
SDL_UnlockYUVOverlay — Unlock an overlay

Synopsis

#include "SDL.h"
void SDL_UnlockYUVOverlay (SDL_Overlay *overlay);

Description
The opposite toSDL_LockYUVOverlay . Unlocks a previously locked overlay. An overlay must be
unlocked before it can be displayed.

See Also
SDL_UnlockYUVOverlay , SDL_CreateYUVOverlay , SDL_Overlay

109

SDL_DisplayYUVOverlay

Name
SDL_DisplayYUVOverlay — Blit the overlay to the display

Synopsis

#include "SDL.h"
int SDL_DisplayYUVOverlay (SDL_Overlay *overlay, SDL_Rect *dstrect);

Description
Blit the overlay to the surface specified when it wascreated. TheSDL_Rectstructure,dstrect ,
specifies the position and size of the destination. If thedstrect is a larger or smaller than the
overlay then the overlay will be scaled, this is optimized for 2x scaling.

See Also
SDL_Overlay, SDL_CreateYUVOverlay

110

SDL_FreeYUVOverlay

Name
SDL_FreeYUVOverlay — Free a YUV video overlay

Synopsis

#include "SDL.h"
void SDL_FreeYUVOverlay (SDL_Overlay *overlay);

Description
Frees andoverlay created bySDL_CreateYUVOverlay .

See Also
SDL_Overlay, SDL_DisplayYUVOverlay , SDL_FreeYUVOverlay

111

SDL_GLattr

Name
SDL_GLattr — SDL GL Attributes

Attributes

SDL_GL_RED_SIZE Size of the framebuffer red component, in bits

SDL_GL_GREEN_SIZE Size of the framebuffer green component, in bits

SDL_GL_BLUE_SIZE Size of the framebuffer blue component, in bits

SDL_GL_ALPHA_SIZE Size of the framebuffer alpha component, in bits

SDL_GL_DOUBLEBUFFER 0 or 1, enable or disable double buffering

SDL_GL_BUFFER_SIZE Size of the framebuffer, in bits

SDL_GL_DEPTH_SIZE Size of the depth buffer, in bits

SDL_GL_STENCIL_SIZE Size of the stencil buffer, in bits

SDL_GL_ACCUM_RED_SIZE Size of the accumulation buffer red component, in
bits

SDL_GL_ACCUM_GREEN_SIZE Size of the accumulation buffer green component,
in bits

SDL_GL_ACCUM_BLUE_SIZE Size of the accumulation buffer blue component,
in bits

SDL_GL_ACCUM_ALPHA_SIZE Size of the accumulation buffer alpha component,
in bits

Description
While you can set most OpenGL attributes normally, the attributes list above must be knownbefore
SDL sets the video mode. These attributes a set and read withSDL_GL_SetAttribute and
SDL_GL_GetAttribute .

See Also
SDL_GL_SetAttribute , SDL_GL_GetAttribute

112

SDL_Rect

Name
SDL_Rect — Defines a rectangular area

Structure Definition

typedef struct{
Sint16 x, y;
Uint16 w, h;

} SDL_Rect;

Structure Data

x, y Position of the upper-left corner of the rectangle

w, h The width and height of the rectangle

Description
A SDL_Rect defines a rectangular area of pixels. It is used bySDL_BlitSurface to define blitting
regions and by several other video functions.

See Also
SDL_BlitSurface , SDL_UpdateRect

113

SDL_Color

Name
SDL_Color — Format independent color description

Structure Definition

typedef struct{
Uint8 r;
Uint8 g;
Uint8 b;
Uint8 unused;

} SDL_Color;

Structure Data

r Red intensity

g Green intensity

b Blue intensity

unused Unused

Description
SDL_Color describes a color in a format independent way. You can convert a SDL_Color to a pixel
value for a certain pixel format usingSDL_MapRGB.

See Also
SDL_PixelFormat, SDL_SetColors , SDL_Palette

114

SDL_Palette

Name
SDL_Palette — Color palette for 8-bit pixel formats

Structure Definition

typedef struct{
int ncolors;
SDL_Color *colors;

} SDL_Palette;

Structure Data

ncolors Number of colors used in this palette

colors Pointer toSDL_Colorstructures that make up the
palette.

Description
Each pixel in an 8-bit surface is an index into thecolors field of the SDL_Palette structure store in
SDL_PixelFormat. A SDL_Palette should never need to be created manually. It is automatically
created when SDL allocates a SDL_PixelFormat for a surface. The colors values of aSDL_Surfaces
palette can be set with theSDL_SetColors .

See Also
SDL_Color, SDL_Surface, SDL_SetColors SDL_SetPalette

115

SDL_PixelFormat

Name
SDL_PixelFormat — Stores surface format information

Structure Definition

typedef struct{
SDL_Palette *palette;
Uint8 BitsPerPixel;
Uint8 BytesPerPixel;
Uint32 Rmask, Gmask, Bmask, Amask;
Uint8 Rshift, Gshift, Bshift, Ashift;
Uint8 Rloss, Gloss, Bloss, Aloss;
Uint32 colorkey;
Uint8 alpha;

} SDL_PixelFormat;

Structure Data

palette Pointer to thepalette, or NULL if the
BitsPerPixel >8

BitsPerPixel The number of bits used to represent each pixel in
a surface. Usually 8, 16, 24 or 32.

BytesPerPixel The number of bytes used to represent each pixel
in a surface. Usually one to four.

[RGBA]mask Binary mask used to retrieve individual color
values

[RGBA]loss Precision loss of each color component (2[RGBA]loss)

[RGBA]shift Binary left shift of each color component in the
pixel value

colorkey Pixel value of transparent pixels

alpha Overall surface alpha value

Description
A SDL_PixelFormat describes the format of the pixel data stored at thepixels field of a

116

SDL_PixelFormat

SDL_Surface. Every surface stores a SDL_PixelFormat in theformat field.

If you wish to do pixel level modifications on a surface, then understanding how SDL stores its color
information is essential.

8-bit pixel formats are the easiest to understand. Since its an 8-bit format, we have 8
BitsPerPixel and 1BytesPerPixel . SinceBytesPerPixel is 1, all pixels are
represented by a Uint8 which contains an index intopalette ->colors . So, to determine the
color of a pixel in a 8-bit surface: we read the color index from surface->pixels and we use that
index to read theSDL_Colorstructure from surface->format ->palette ->colors . Like so:

SDL_Surface *surface;
SDL_PixelFormat *fmt;
SDL_Color *color;
Uint8 index;

.

.

/* Create surface */
.
.
fmt=surface->format;

/* Check the bitdepth of the surface */
if(fmt->BitsPerPixel!=8){

fprintf(stderr, "Not an 8-bit surface.\n");
return(-1);

}

/* Lock the surface */
SDL_LockSurface(surface);

/* Get the topleft pixel */
index=*(Uint8 *)surface->pixels;
color=fmt->palette->colors[index];

/* Unlock the surface */
SDL_UnlockSurface(surface);
printf("Pixel Color-> Red: %d, Green: %d, Blue: %d. Index: %d\n",

color->r, color->g, color->b, index);
.
.

Pixel formats above 8-bit are an entirely different experience. They are considered to be "TrueColor"
formats and the color information is stored in the pixels themselves, not in a palette. The mask, shift
and loss fields tell us how the color information is encoded. The mask fields allow us to isolate each
color component, the shift fields tell us the number of bits to the right of each component in the pixel

117

SDL_PixelFormat

value and the loss fields tell us the number of bits lost from each component when packing 8-bit
color component in a pixel.

/* Extracting color components from a 32-bit color value */
SDL_PixelFormat *fmt;
SDL_Surface *surface;
Uint32 temp, pixel;
Uint8 red, green, blue, alpha;
.
.
.
fmt=surface->format;
SDL_LockSurface(surface);
pixel=*((Uint32*)surface->pixels);
SDL_UnlockSurface(surface);

/* Get Red component */
temp=pixel&fmt->Rmask; /* Isolate red component */
temp=temp>>fmt->Rshift;/* Shift it down to 8-bit */
temp=temp<<fmt->Rloss; /* Expand to a full 8-bit number */
red=(Uint8)temp;

/* Get Green component */
temp=pixel&fmt->Gmask; /* Isolate green component */
temp=temp>>fmt->Gshift;/* Shift it down to 8-bit */
temp=temp<<fmt->Gloss; /* Expand to a full 8-bit number */
green=(Uint8)temp;

/* Get Blue component */
temp=pixel&fmt->Bmask; /* Isolate blue component */
temp=temp>>fmt->Bshift;/* Shift it down to 8-bit */
temp=temp<<fmt->Bloss; /* Expand to a full 8-bit number */
blue=(Uint8)temp;

/* Get Alpha component */
temp=pixel&fmt->Amask; /* Isolate alpha component */
temp=temp>>fmt->Ashift;/* Shift it down to 8-bit */
temp=temp<<fmt->Aloss; /* Expand to a full 8-bit number */
alpha=(Uint8)temp;

printf("Pixel Color -> R: %d, G: %d, B: %d, A: %d\n", red, green, blue, alpha);
.
.
.

118

SDL_PixelFormat

See Also
SDL_Surface, SDL_MapRGB

119

SDL_Surface

Name
SDL_Surface — Graphical Surface Structure

Structure Definition

typedef struct SDL_Surface {
Uint32 flags; /* Read-only */
SDL_PixelFormat *format; /* Read-only */
int w, h; /* Read-only */
Uint16 pitch; /* Read-only */
void *pixels; /* Read-write */

/* clipping information */
SDL_Rect clip_rect; /* Read-only */

/* Reference count -- used when freeing surface */
int refcount; /* Read-mostly */

/* This structure also contains private fields not shown here */
} SDL_Surface;

Structure Data

flags Surface flags

format Pixel format

w, h Width and height of the surface

pitch Length of a surface scanline in bytes

pixels Pointer to the actual pixel data

clip_rect surface cliprectangle

Description
SDL_Surface’s represent areas of "graphical" memory, memory that can be drawn to. The video
framebuffer is returned as a SDL_Surface bySDL_SetVideoMode andSDL_GetVideoSurface .
Most of the fields should be pretty obvious.w andh are the width and height of the surface in pixels.
pixels is a pointer to the actual pixel data, the surface should belockedbefore accessing this field.
Theclip_rect field is the clipping rectangle as set bySDL_SetClipRect .

120

SDL_Surface

The following are supported in theflags field.

SDL_SWSURFACE Surface is stored in system memory

SDL_HWSURFACE Surface is stored in video memory

SDL_ASYNCBLIT Surface uses asynchronous blits if possible

SDL_ANYFORMAT Allows any pixel-format (Display surface)

SDL_HWPALETTE Surface has exclusive palette

SDL_DOUBLEBUF Surface is double buffered (Display surface)

SDL_FULLSCREEN Surface is full screen (Display Surface)

SDL_OPENGL Surface has an OpenGL context (Display Surface)

SDL_OPENGLBLIT Surface supports OpenGL blitting (Display
Surface)

SDL_RESIZABLE Surface is resizable (Display Surface)

SDL_HWACCEL Surface blit uses hardware acceleration

SDL_SRCCOLORKEY Surface use colorkey blitting

SDL_RLEACCEL Colorkey blitting is accelerated with RLE

SDL_SRCALPHA Surface blit uses alpha blending

SDL_PREALLOC Surface uses preallocated memory

See Also
SDL_PixelFormat

121

SDL_VideoInfo

Name
SDL_VideoInfo — Video Target information

Structure Definition

typedef struct{
Uint32 hw_available:1;
Uint32 wm_available:1;
Uint32 blit_hw:1;
Uint32 blit_hw_CC:1;
Uint32 blit_hw_A:1;
Uint32 blit_sw:1;
Uint32 blit_sw_CC:1;
Uint32 blit_sw_A:1;
Uint32 blit_fill;
Uint32 video_mem;
SDL_PixelFormat *vfmt;

} SDL_VideoInfo;

Structure Data

hw_available Is it possible to create hardware surfaces?

wm_available Is there a window manager available

blit_hw Are hardware to hardware blits accelerated?

blit_hw_CC Are hardware to hardware colorkey blits
accelerated?

blit_hw_A Are hardware to hardware alpha blits accelerated?

blit_sw Are software to hardware blits accelerated?

blit_sw_CC Are software to hardware colorkey blits
accelerated?

blit_sw_A Are software to hardware alpha blits accelerated?

blit_fill Are color fills accelerated?

video_mem Total amount of video memory in Kilobytes

vfmt Pixel formatof the video device

122

SDL_VideoInfo

Description
This (read-only) structure is returned bySDL_GetVideoInfo . It contains information on either the
’best’ available mode (if called beforeSDL_SetVideoMode) or the current video mode.

See Also
SDL_PixelFormat, SDL_GetVideoInfo

123

SDL_Overlay

Name
SDL_Overlay — YUV video overlay

Structure Definition

typedef struct{
Uint32 format;
int w, h;
int planes;
Uint16 *pitches;
Uint8 **pixels;
Uint32 hw_overlay:1;

} SDL_Overlay;

Structure Data

format Overlay format (see below)

w, h Width and height of overlay

planes Number of planes in the overlay. Usually either 1
or 3

pitches An array of pitches, one for each plane. Pitch is
the length of a row in bytes.

pixels An array of pointers to teh data of each plane. The
overlay should be locked before these pointers are
used.

hw_overlay This will be set to 1 if the overlay is hardware
accelerated.

Description
A SDL_Overlay is similar to aSDL_Surfaceexcept it stores a YUV overlay. All the fields are read
only, except forpixels which should belockedbefore use. Theformat field stores the format of
the overlay which is one of the following:

#define SDL_YV12_OVERLAY 0x32315659 /* Planar mode: Y + V + U */
#define SDL_IYUV_OVERLAY 0x56555949 /* Planar mode: Y + U + V */
#define SDL_YUY2_OVERLAY 0x32595559 /* Packed mode: Y0+U0+Y1+V0 */

124

SDL_Overlay

#define SDL_UYVY_OVERLAY 0x59565955 /* Packed mode: U0+Y0+V0+Y1 */
#define SDL_YVYU_OVERLAY 0x55595659 /* Packed mode: Y0+V0+Y1+U0 */

More information on YUV formats can be found at http://www.webartz.com/fourcc/indexyuv.htm.

See Also
SDL_CreateYUVOverlay , SDL_LockYUVOverlay , SDL_UnlockYUVOverlay ,
SDL_FreeYUVOverlay

125

Chapter 7. Window Management
SDL provides a small set of window management functions which allow applications to change their
title and toggle from windowed mode to fullscreen (if available)

SDL_WM_SetCaption

Name
SDL_WM_SetCaption — Sets the window tile and icon name.

Synopsis

#include "SDL.h"
void SDL_WM_SetCaption (const char *title, const char *icon);

Description
Sets the title-bar and icon name of the display window.

See Also
SDL_WM_GetCaption , SDL_WM_SetIcon

126

SDL_WM_GetCaption

Name
SDL_WM_GetCaption — Gets the window title and icon name.

Synopsis

#include "SDL.h"
void SDL_WM_GetCaption (char **title, char **icon);

Description
Set pointers to the windowtitle andicon name.

See Also
SDL_WM_SetCaption , SDL_WM_SetIcon

127

SDL_WM_SetIcon

Name
SDL_WM_SetIcon — Sets the icon for the display window.

Synopsis

#include "SDL.h"
void SDL_WM_SetIcon (SDL_Surface *icon, Uint8 *mask);

Description
Sets the icon for the display window.

This function must be called before the first call toSDL_SetVideoMode.

It takes anicon surface, and amask in MSB format.

If mask is NULL, the entire icon surface will be used as the icon.

Example

SDL_WM_SetIcon(SDL_LoadBMP("icon.bmp"), NULL);

See Also
SDL_SetVideoMode , SDL_WM_SetCaption

128

SDL_WM_IconifyWindow

Name
SDL_WM_IconifyWindow — Iconify/Minimise the window

Synopsis

#include "SDL.h"
int SDL_WM_IconifyWindow (void);

Description
If the application is running in a window managed environment SDL attempts to iconify/minimise it.
If SDL_WM_IconifyWindow is successful, the application will receive aSDL_APPACTIVEloss
event.

Return Value
Returns non-zero on success or 0 if iconification is not support or was refused by the window
manager.

129

SDL_WM_ToggleFullScreen

Name
SDL_WM_ToggleFullScreen — Toggles fullscreen mode

Synopsis

#include "SDL.h"
int SDL_WM_ToggleFullScreen (SDL_Surface *surface);

Description
Toggles the application between windowed and fullscreen mode, if supported. (X11 is the only target
currently supported, BeOS support is experimental).

Return Value
Returns 0 on failure or 1 on success.

130

SDL_WM_GrabInput

Name
SDL_WM_GrabInput — Grabs mouse and keyboard input.

Synopsis

#include "SDL.h"
SDL_GrabMode SDL_WM_GrabInput (SDL_GrabMode mode);

Description
Grabbing means that the mouse is confined to the application window, and nearly all keyboard input
is passed directly to the application, and not interpreted by a window manager, if any.

Whenmode is SDL_GRAB_QUERYthe grab mode is not changed, but the current grab mode is
returned.

typedef enum {
SDL_GRAB_QUERY,
SDL_GRAB_OFF,
SDL_GRAB_ON

} SDL_GrabMode;

Return Value
The current/new SDL_GrabMode.

131

Chapter 8. Events

Introduction
Event handling allows your application to receive input from the user. Event handling is initalised
(along with video) with a call to:

SDL_Init(SDL_INIT_VIDEO);

Interally, SDL stores all the events waiting to be handled in an event queue. Using functions like
SDL_PollEvent andSDL_PeepEvents you can observe and handle waiting input events.

The key to event handling in SDL is theSDL_Eventunion. The event queue itself is composed of a
series of SDL_Event unions, one for each waiting event. SDL_Event unions are read from the queue
with theSDL_PollEvent function and it is then up to the application to process the information
stored with them.

SDL Event Structures.

SDL_Event

Name
SDL_Event — General event structure

Structure Definition

typedef union{
Uint8 type;
SDL_ActiveEvent active;
SDL_KeyboardEvent key;
SDL_MouseMotionEvent motion;
SDL_MouseButtonEvent button;
SDL_JoyAxisEvent jaxis;
SDL_JoyBallEvent jball;
SDL_JoyHatEvent jhat;
SDL_JoyButtonEvent jbutton;
SDL_ResizeEvent resize;
SDL_QuitEvent quit;

132

SDL_Event

SDL_UserEvent user;
SDL_SywWMEvent syswm;

} SDL_Event;

Structure Data

type The type of event

active Activation event

key Keyboard event

motion Mouse motion event

button Mouse button event

jaxis Joystick axis motion event

jball Joystick trackball motion event

jhat Joystick hat motion event

jbutton Joystick button event

resize Application window resize event

quit Application quit request event

user User defined event

syswm Undefined window manager event

Description
The SDL_Event union is the core to all event handling is SDL, its probably the most important
structure after SDL_Surface. SDL_Event is a union of all event structures used in SDL, using it is a
simple matter of knowing which union member relates to which eventtype .

Event type Event Structure

SDL_ACTIVEEVENT SDL_ActiveEvent

SDL_KEYDOWN/UP SDL_KeyboardEvent

SDL_MOUSEMOTION SDL_MouseMotionEvent

SDL_MOUSEBUTTONDOWN/UP SDL_MouseButtonEvent

SDL_JOYAXISMOTION SDL_JoyAxisEvent

SDL_JOYBALLMOTION SDL_JoyBallEvent

SDL_JOYHATMOTION SDL_JoyHatEvent

SDL_JOYBUTTONDOWN/UP SDL_JoyButtonEvent

SDL_QUIT SDL_QuitEvent

133

SDL_Event

Event type Event Structure

SDL_SYSWMEVENT SDL_SysWMEvent

SDL_VIDEORESIZE SDL_ResizeEvent

SDL_USEREVENT SDL_UserEvent

Use
The SDL_Event structure has two uses

• Reading events on the event queue
• Placing events on the event queue

Reading events from the event queue is done with eitherSDL_PollEvent or SDL_PeepEvents .
We’ll useSDL_PollEvent and step through an example.

First off, we create an empty SDL_Event structure.

SDL_Event test_event;

SDL_PollEvent removes the next event from the event queue, if there are no events on the queue it
returns 0 otherwise it returns 1. We use awhile loop to process each event in turn.

while(SDL_PollEvent(&test_event)) {

TheSDL_PollEvent function take a pointer to an SDL_Event structure that is to be filled with
event information. We know that ifSDL_PollEvent removes an event from the queue then the
event information will be placed in our test_event structure, but we also know that thetypeof event
will be placed in thetype member of test_event. So to handle each eventtype seperately we use a
switch statement.

switch(test_event.type) {

We need to know what kind of events we’re looking forand the eventtype ’s of those events. So
lets assume we want to detect where the user is moving the mouse pointer within our application. We
look through our event types and notice thatSDL_MOUSEMOTIONis, more than likely, the event we’re
looking for. A little moreresearch tells use thatSDL_MOUSEMOTIONevents are handled within the
SDL_MouseMotionEventstructure which is themotion member of SDL_Event. We can check for
theSDL_MOUSEMOTIONeventtype within our switch statement like so:

case SDL_MOUSEMOTION:

All we need do now is read the information out of themotion member of test_event.

printf("We got a motion event.\n");

134

SDL_Event

printf("Current mouse position is: (%d, %d)\n", test_event.motion.x, test_event.motion.y);
break;

default:
printf("Unhandled Event!\n");
break;

}
}
printf("Event queue empty.\n");

It is also possible to push events onto the event queue and so use it as a two-way communication
path. BothSDL_PushEvent andSDL_PeepEvents allow you to place events onto the event queue.
This is usually used to place aSDL_USEREVENTon the event queue, however you could use it to post
fake input events if you wished. Creating your own events is a simple matter of choosing the event
type you want, setting thetype member and filling the appropriate member structure with
information.

SDL_Event user_event;

user_event.type=SDL_USEREVENT;
user_event.user.code=2;
user_event.user.data1=NULL;
user_event.user.data2=NULL;
SDL_PushEvent(&user_event);

See Also
SDL_PollEvent , SDL_PushEvent , SDL_PeepEvents

135

SDL_ActiveEvent

Name
SDL_ActiveEvent — Application visibility event structure

Structure Definition

typedef struct{
Uint8 type;
Uint8 gain;
Uint8 state;

} SDL_ActiveEvent;

Structure Data

type SDL_ACTIVEEVENT.

gain 0 if the event is a loss or 1 if it is a gain.

state SDL_APPMOUSEFOCUSif mouse focus was gained
or lost,SDL_APPINPUTFOCUSif input focus was
gained or lost, orSDL_APPACTIVEif the
application was iconified (gain =0) or
restored(gain =1).

Description
SDL_ActiveEvent is a member of theSDL_Eventunion and is used when an event of type
SDL_ACTIVEEVENTis reported.

When the mouse leaves or enters the window area aSDL_APPMOUSEFOCUStype activation event
occurs, if the mouse entered the window thengain will be 1, otherwisegain will be 0. A
SDL_APPINPUTFOCUStype activation event occurs when the application loses or gains keyboard
focus. This usually occurs when another application is made active. Finally, aSDL_APPACTIVEtype
event occurs when the application is either minimised/iconified (gain =0) or restored.

Note: This event does not occur when an application window is first created.

136

SDL_ActiveEvent

See Also
SDL_Event, SDL_GetAppState

137

SDL_KeyboardEvent

Name
SDL_KeyboardEvent — Keyboard event structure

Structure Definition

typedef struct{
Uint8 type;
Uint8 state;
SDL_keysym keysym;

} SDL_KeyboardEvent;

Structure Data

type SDL_KEYDOWNor SDL_KEYUP

state SDL_PRESSEDor SDL_RELEASED

keysym Contains key press information

Description
SDL_KeyboardEvent is a member of theSDL_Eventunion and is used when an event of type
SDL_KEYDOWNor SDL_KEYUPis reported.

Thetype andstate actually report the same information, they just use different values to do it! A
keyboard event occurs when a key is released (type =SDK_KEYUPor state =SDL_RELEASED) and
when a key is pressed (type =SDL_KEYDOWNor state =SDL_PRESSED). The information on what
key was pressed or released is in thekeysymstructure.

Note: Repeating SDL_KEYDOWNevents will occur if key repeat is enabled (see
SDL_EnableKeyRepeat).

See Also
SDL_Event, SDL_keysym, SDL_EnableKeyRepeat , SDL_EnableUNICODE

138

SDL_MouseMotionEvent

Name
SDL_MouseMotionEvent — Mouse motion event structure

Structure Definition

typedef struct{
Uint8 type;
Uint8 state;
Uint16 x, y;
Sint16 xrel, yrel;

} SDL_MouseMotionEvent;

Structure Data

type SDL_MOUSEMOTION

state The current button state

x , y The X/Y coordinates of the mouse

xrel , yrel Relative motion in the X/Y direction

Description
SDL_MouseMotionEvent is a member of theSDL_Eventunion and is used when an event of type
SDL_MOUSEMOTIONis reported.

Simply put, aSDL_MOUSEMOTIONtype event occurs when a user moves the mouse within the
application window or whenSDL_WarpMouse is called. Both the absolute (x andy) and relative
(xrel andyrel) coordinates are reported along with the current button states (state). The button
state can be interpreted using theSDL_BUTTONmacro (seeSDL_GetMouseState).

If the cursor is hidden (SDL_ShowCursor (0)) and the input is grabbed
(SDL_WM_GrabInput (SDL_GRAB_ON)), then the mouse will give relative motion events even
when the cursor reaches the edge fo the screen. This is currently only implemented on Windows and
Linux/Unix-a-likes.

139

SDL_MouseMotionEvent

See Also
SDL_Event, SDL_MouseButtonEvent

140

SDL_MouseButtonEvent

Name
SDL_MouseButtonEvent — Mouse button event structure

Structure Definition

typedef struct{
Uint8 type;
Uint8 button;
Uint8 state;
Uint16 x, y;

} SDL_MouseButtonEvent;

Structure Data

type SDL_MOUSEBUTTONDOWNor
SDL_MOUSEBUTTONUP

button The mouse button index (SDL_BUTTON_LEFT,
SDL_BUTTON_MIDDLE,
SDL_BUTTON_RIGHT)

state SDL_PRESSEDor SDL_RELEASED

x , y The X/Y coordinates of the mouse at press/release
time

Description
SDL_MouseButtonEvent is a member of theSDL_Eventunion and is used when an event of type
SDL_MOUSEBUTTONDOWNor SDL_MOUSEBUTTONUPis reported.

When a mouse button press or release is detected then number of the button pressed (from 1 to 255,
with 1 usually being the left button and 2 the right) is placed intobutton , the position of the mouse
when this event occured is stored in thex and they fields. LikeSDL_KeyboardEvent, information
on whether the event was a press or a release event is stored in both thetype andstate fields, but
this should be obvious.

141

SDL_MouseButtonEvent

See Also
SDL_Event, SDL_MouseMotionEvent

142

SDL_JoyAxisEvent

Name
SDL_JoyAxisEvent — Joystick axis motion event structure

Structure Definition

typedef struct{
Uint8 type;
Uint8 which;
Uint8 axis;
Sint16 value;

} SDL_JoyAxisEvent;

Structure Data

type SDL_JOYAXISMOTION

which Joystick device index

axis Joystick axis index

value Axis value (range: -32768 to 32767)

Description
SDL_JoyAxisEvent is a member of theSDL_Eventunion and is used when an event of type
SDL_JOYAXISMOTIONis reported.

A SDL_JOYAXISMOTIONevent occurs when ever a user moves an axis on the joystick. The field
which is the index of the joystick that reported the event andaxis is the index of the axis (for a
more detailed explaination see theJoystick section). value is the current position of the axis.

See Also
SDL_Event, Joystick Functions, SDL_JoystickEventState , SDL_JoystickGetAxis

143

SDL_JoyButtonEvent

Name
SDL_JoyButtonEvent — Joystick button event structure

Structure Definition

typedef struct{
Uint8 type;
Uint8 which;
Uint8 button;
Uint8 state;

} SDL_JoyButtonEvent;

Structure Data

type SDL_JOYBUTTONDOWNor SDL_JOYBUTTONUP

which Joystick device index

button Joystick button index

state SDL_PRESSEDor SDL_RELEASED

Description
SDL_JoyButtonEvent is a member of theSDL_Eventunion and is used when an event of type
SDL_JOYBUTTONDOWNor SDL_JOYBUTTONUPis reported.

A SDL_JOYBUTTONDOWNor SDL_JOYBUTTONUPevent occurs when ever a user presses or releases a
button on a joystick. The fieldwhich is the index of the joystick that reported the event and
button is the index of the button (for a more detailed explaination see theJoystick section).
state is the current state or the button which is eitherSDL_PRESSEDor SDL_RELEASED.

See Also
SDL_Event, Joystick Functions, SDL_JoystickEventState , SDL_JoystickGetButton

144

SDL_JoyHatEvent

Name
SDL_JoyHatEvent — Joystick hat position change event structure

Structure Definition

typedef struct{
Uint8 type;
Uint8 which;
Uint8 hat;
Uint8 value;

} SDL_JoyHatEvent;

Structure Data

type SDL_JOY

which Joystick device index

hat Joystick hat index

value Hat position

Description
SDL_JoyHatEvent is a member of theSDL_Eventunion and is used when an event of type
SDL_JOYHATMOTIONis reported.

A SDL_JOYHATMOTIONevent occurs when ever a user moves a hat on the joystick. The fieldwhich
is the index of the joystick that reported the event andhat is the index of the hat (for a more detailed
exlaination see theJoystick section). value is the current position of the hat. It is a logically OR’d
combination of the following values (whose meanings should be pretty obvious:) :

SDL_HAT_CENTERED
SDL_HAT_UP
SDL_HAT_RIGHT
SDL_HAT_DOWN
SDL_HAT_LEFT

The following defines are also provided:

SDL_HAT_RIGHTUP

145

SDL_JoyHatEvent

SDL_HAT_RIGHTDOWN
SDL_HAT_LEFTUP
SDL_HAT_LEFTDOWN

See Also
SDL_Event, Joystick Functions, SDL_JoystickEventState , SDL_JoystickGetHat

146

SDL_JoyBallEvent

Name
SDL_JoyBallEvent — Joystick trackball motion event structure

Structure Definition

typedef struct{
Uint8 type;
Uint8 which;
Uint8 ball;
Sint16 xrel, yrel;

} SDL_JoyBallEvent;

Structure Data

type SDL_JOYBALLMOTION

which Joystick device index

ball Joystick trackball index

xrel , yrel The relative motion in the X/Y direction

Description
SDL_JoyBallEvent is a member of theSDL_Eventunion and is used when an event of type
SDL_JOYBALLMOTIONis reported.

A SDL_JOYBALLMOTIONevent occurs when a user moves a trackball on the joystick. The field
which is the index of the joystick that reported the event andball is the index of the trackball (for
a more detailed explaination see theJoystick section). Trackballs only return relative motion, this is
the change in position on the ball since it was last polled (last cycle of the event loop) and it is stored
in xrel andyrel .

See Also
SDL_Event, Joystick Functions, SDL_JoystickEventState , SDL_JoystickGetBall

147

SDL_ResizeEvent

Name
SDL_ResizeEvent — Window resize event structure

Structure Definition

typedef struct{
Uint8 type;
int w, h;

} SDL_ResizeEvent;

Structure Data

type SDL_VIDEORESIZE

w, h New width and height of the window

Description
SDL_ResizeEvent is a member of theSDL_Eventunion and is used when an event of type
SDL_VIDEORESIZEis reported.

WhenSDL_RESIZABLE is passed as aflag to SDL_SetVideoMode the user is allowed to resize
the applications window. When the window is resized anSDL_VIDEORESIZEis report, with the new
window width and height values stored inw andh, respectively. When anSDL_VIDEORESIZEis
recieved the window should be resized to the new dimensions usingSDL_SetVideoMode .

See Also
SDL_Event, SDL_SetVideoMode

148

SDL_SysWMEvent

Name
SDL_SysWMEvent — Platform-dependent window manager event.

Description
The system window manager event contains a pointer to system-specific information about unknown
window manager events. If you enable this event usingSDL_EventState() , it will be generated
whenever unhandled events are received from the window manager. This can be used, for example,
to implement cut-and-paste in your application.

typedef struct {
Uint8 type; /* Always SDL_SysWM */

} SDL_SysWMEvent;

If you want to obtain system-specific information about the window manager, you can fill the version
member of a SDL_SysWMinfo structure (details can be found inSDL_syswm.h , which must be
included) using theSDL_VERSION() macro found inSDL_version.h , and pass it to the function:

int SDL_GetWMInfo (SDL_SysWMinfo *info);

See Also
SDL_EventState

149

SDL_UserEvent

Name
SDL_UserEvent — A user-defined event type

Structure Definition

typedef struct{
Uint8 type;
int code;
void *data1;
void *data2;

} SDL_UserEvent;

Structure Data

type SDL_USEREVENTthrough toSDL_NUMEVENTS-1

code User defined event code

data1 User defined data pointer

data2 User defined data pointer

Description
SDL_UserEvent is in theuser member of the structureSDL_Event. This event is unique, it is never
created by SDL but only by the user. The event can be pushed onto the event queue using
SDL_PushEvent . The contents of the structure members or completely up to the programmer, the
only requirement is thattype is a value fromSDL_USEREVENTto SDL_NUMEVENTS-1(inclusive).

Examples

SDL_Event event;

event.type = SDL_USEREVENT;
event.user.code = my_event_code;
event.user.data1 = significant_data;
event.user.data2 = 0;
SDL_PushEvent(&event);

150

SDL_UserEvent

See Also
SDL_Event, SDL_PushEvent

151

SDL_QuitEvent

Name
SDL_QuitEvent — Quit requested event

Structure Definition

typedef struct{
Uint8 type

} SDL_QuitEvent;

Structure Data

type SDL_QUIT

Description
SDL_QuitEvent is a member of theSDL_Eventunion and is used whan an event of typeSDL_QUIT

is reported.

As can be seen, the SDL_QuitEvent structure serves no useful purpose. The event itself, on the other
hand, is very important. If you filter out or ignore a quit event then it is impossible for the user to
close the window. On the other hand, if you do accept a quit event then the application window will
be closed, and screen updates will still report success event though the application will no longer be
visible.

Note: The macro SDL_QuitRequested will return non-zero if a quit event is pending

See Also
SDL_Event, SDL_SetEventFilter

152

SDL_keysym

Name
SDL_keysym — Keysym structure

Structure Definition

typedef struct{
Uint8 scancode;
SDLKey sym;
SDLMod mod;
Uint16 unicode;

} SDL_keysym;

Structure Data

scancode Hardware specific scancode

sym SDL virtual keysym

mod Current key modifiers

unicode Translated character

Description
The SDL_keysym structure is used by reporting key presses and releases since it is a part of the
SDL_KeyboardEvent.

Thescancode field should generally be left alone, it is the hardware dependent scancode returned
by the keyboard. Thesym field is extremely useful. It is the SDL-defined value of the key (seeSDL
Key Syms. This field is very useful when you are checking for certain key presses, like so:

.

.
while(SDL_PollEvent(&event)){

switch(event.type){
case SDL_KEYDOWN:

if(event.key.keysym.sym==SDLK_LEFT)
move_left();

break;
.
.

153

SDL_keysym

.
}

}
.
.

mod stores the current state of the keyboard modifiers as explained inSDL_GetModState . The
unicode is only used when UNICODE translation is enabled withSDL_EnableUNICODE. If
unicode is non-zero then this a the UNICODE character corresponding to the keypress. If the high
9 bits of the character are 0, then this maps to the equivalent ASCII character:

char ch;
if ((keysym.unicode & 0xFF80) == 0) {

ch = keysym.unicode & 0x7F;
}
else {

printf("An International Character.\n");
}

UNICODE translation does have a slight overhead so don’t enable it unless its needed.

See Also
SDLKey

154

SDLKey

Name
SDLKey — Keysym definitions.

Description

Table 8-1. SDL Keysym definitions

SDLKey ASCII value Common name

SDLK_BACKSPACE ’\b’ backspace

SDLK_TAB ’\t’ tab

SDLK_CLEAR clear

SDLK_RETURN ’\r’ return

SDLK_PAUSE pause

SDLK_ESCAPE ’^[’ escape

SDLK_SPACE ’ ’ space

SDLK_EXCLAIM ’!’ exclaim

SDLK_QUOTEDBL ’"’ quotedbl

SDLK_HASH ’#’ hash

SDLK_DOLLAR ’$’ dollar

SDLK_AMPERSAND ’&’ ampersand

SDLK_QUOTE ”’ quote

SDLK_LEFTPAREN ’(’ left parenthesis

SDLK_RIGHTPAREN ’)’ right parenthesis

SDLK_ASTERISK ’*’ asterisk

SDLK_PLUS ’+’ plus sign

SDLK_COMMA ’,’ comma

SDLK_MINUS ’-’ minus sign

SDLK_PERIOD ’.’ period

SDLK_SLASH ’/’ forward slash

SDLK_0 ’0’ 0

SDLK_1 ’1’ 1

SDLK_2 ’2’ 2

SDLK_3 ’3’ 3

155

SDLKey

SDLKey ASCII value Common name

SDLK_4 ’4’ 4

SDLK_5 ’5’ 5

SDLK_6 ’6’ 6

SDLK_7 ’7’ 7

SDLK_8 ’8’ 8

SDLK_9 ’9’ 9

SDLK_COLON ’:’ colon

SDLK_SEMICOLON ’;’ semicolon

SDLK_LESS ’<’ less-than sign

SDLK_EQUALS ’=’ equals sign

SDLK_GREATER ’>’ greater-than sign

SDLK_QUESTION ’?’ question mark

SDLK_AT ’@’ at

SDLK_LEFTBRACKET ’[’ left bracket

SDLK_BACKSLASH ’\’ backslash

SDLK_RIGHTBRACKET ’]’ right bracket

SDLK_CARET ’^’ caret

SDLK_UNDERSCORE ’_’ underscore

SDLK_BACKQUOTE ’‘’ grave

SDLK_a ’a’ a

SDLK_b ’b’ b

SDLK_c ’c’ c

SDLK_d ’d’ d

SDLK_e ’e’ e

SDLK_f ’f’ f

SDLK_g ’g’ g

SDLK_h ’h’ h

SDLK_i ’i’ i

SDLK_j ’j’ j

SDLK_k ’k’ k

SDLK_l ’l’ l

SDLK_m ’m’ m

SDLK_n ’n’ n

SDLK_o ’o’ o

SDLK_p ’p’ p

156

SDLKey

SDLKey ASCII value Common name

SDLK_q ’q’ q

SDLK_r ’r’ r

SDLK_s ’s’ s

SDLK_t ’t’ t

SDLK_u ’u’ u

SDLK_v ’v’ v

SDLK_w ’w’ w

SDLK_x ’x’ x

SDLK_y ’y’ y

SDLK_z ’z’ z

SDLK_DELETE ’^?’ delete

SDLK_KP0 keypad 0

SDLK_KP1 keypad 1

SDLK_KP2 keypad 2

SDLK_KP3 keypad 3

SDLK_KP4 keypad 4

SDLK_KP5 keypad 5

SDLK_KP6 keypad 6

SDLK_KP7 keypad 7

SDLK_KP8 keypad 8

SDLK_KP9 keypad 9

SDLK_KP_PERIOD ’.’ keypad period

SDLK_KP_DIVIDE ’/’ keypad divide

SDLK_KP_MULTIPLY ’*’ keypad multiply

SDLK_KP_MINUS ’-’ keypad minus

SDLK_KP_PLUS ’+’ keypad plus

SDLK_KP_ENTER ’\r’ keypad enter

SDLK_KP_EQUALS ’=’ keypad equals

SDLK_UP up arrow

SDLK_DOWN down arrow

SDLK_RIGHT right arrow

SDLK_LEFT left arrow

SDLK_INSERT insert

SDLK_HOME home

SDLK_END end

157

SDLKey

SDLKey ASCII value Common name

SDLK_PAGEUP page up

SDLK_PAGEDOWN page down

SDLK_F1 F1

SDLK_F2 F2

SDLK_F3 F3

SDLK_F4 F4

SDLK_F5 F5

SDLK_F6 F6

SDLK_F7 F7

SDLK_F8 F8

SDLK_F9 F9

SDLK_F10 F10

SDLK_F11 F11

SDLK_F12 F12

SDLK_F13 F13

SDLK_F14 F14

SDLK_F15 F15

SDLK_NUMLOCK numlock

SDLK_CAPSLOCK capslock

SDLK_SCROLLOCK scrollock

SDLK_RSHIFT right shift

SDLK_LSHIFT left shift

SDLK_RCTRL right ctrl

SDLK_LCTRL left ctrl

SDLK_RALT right alt

SDLK_LALT left alt

SDLK_RMETA right meta

SDLK_LMETA left meta

SDLK_LSUPER left windows key

SDLK_RSUPER right windows key

SDLK_MODE mode shift

SDLK_HELP help

SDLK_PRINT print-screen

SDLK_SYSREQ SysRq

SDLK_BREAK break

158

SDLKey

SDLKey ASCII value Common name

SDLK_MENU menu

SDLK_POWER power

SDLK_EURO euro

Table 8-2. SDL modifier definitions

SDL Modifier Meaning

KMOD_NONE No modifiers applicable

KMOD_NUM Numlock is down

KMOD_CAPS Capslock is down

KMOD_LCTRL Left Control is down

KMOD_RCTRL Right Control is down

KMOD_RSHIFT Right Shift is down

KMOD_LSHIFT Left Shift is down

KMOD_RALT Right Alt is down

KMOD_LALT Left Alt is down

KMOD_CTRL A Control key is down

KMOD_SHIFT A Shift key is down

KMOD_ALT An Alt key is down

159

Event Functions.

SDL_PumpEvents

Name
SDL_PumpEvents — Pumps the event loop, gathering events from the input devices.

Synopsis

#include "SDL.h"
void SDL_PumpEvents (void);

Description
Pumps the event loop, gathering events from the input devices.

SDL_PumpEvents gathers all the pending input information from devices and places it on the event
queue. Without calls toSDL_PumpEvents no events would ever be placed on the queue. Often calls
the need forSDL_PumpEvents is hidden from the user sinceSDL_PollEvent and
SDL_WaitEvent implicitly call SDL_PumpEvents . However, if you are not polling or waiting for
events (e.g. your filtering them), then you must callSDL_PumpEvents to force an event queue
update.

Note: You can only call this function in the thread that set the video mode.

See Also
SDL_PollEvent

160

SDL_PeepEvents

Name
SDL_PeepEvents — Checks the event queue for messages and optionally returns them.

Synopsis

#include "SDL.h"
int SDL_PeepEvents (SDL_Event *events, int numevents, SDL_eventaction
action, Uint32 mask);

Description
Checks the event queue for messages and optionally returns them.

If action is SDL_ADDEVENT, up tonumevents events will be added to the back of the event
queue.

If action is SDL_PEEKEVENT, up tonumevents events at the front of the event queue, matching
mask, will be returned and will not be removed from the queue.

If action is SDL_GETEVENT, up tonumevents events at the front of the event queue, matching
mask, will be returned and will be removed from the queue.

This function is thread-safe.

Return Value
This function returns the number of events actually stored, or -1 if there was an error.

See Also
SDL_Event, SDL_PollEvent , SDL_PushEvent

161

SDL_PollEvent

Name
SDL_PollEvent — Polls for currently pending events.

Synopsis

#include "SDL.h"
int SDL_PollEvent (SDL_Event *event);

Description
Polls for currently pending events, and returns 1 if there are any pending events, or 0 if there are
none available.

If event is notNULL, the next event is removed from the queue and stored in that area.

Examples

SDL_Event event; /* Event structure */

.

.

.
/* Check for events */
while(SDL_PollEvent(&event)){ /* Loop until there are no events left on the queue */

switch(event.type){ /* Process the appropiate event type */
case SDL_KEYDOWN: /* Handle a KEYDOWN event */

printf("Oh! Key press\n");
break;

case SDL_MOUSEMOTION:
.
.
.

default: /* Report an unhandled event */
printf("I don’t know what this event is!\n");

}
}

162

SDL_PollEvent

See Also
SDL_Event, SDL_WaitEvent , SDL_PeepEvents

163

SDL_WaitEvent

Name
SDL_WaitEvent — Waits indefinitely for the next available event.

Synopsis

#include "SDL.h"
int SDL_WaitEvent (SDL_Event *event);

Description
Waits indefinitely for the next available event, returning 1, or 0 if there was an error while waiting
for events.

If event is notNULL, the next event is removed from the queue and stored in that area.

See Also
SDL_Event, SDL_PollEvent

164

SDL_PushEvent

Name
SDL_PushEvent — Pushes an event onto the event queue

Synopsis

#include "SDL.h"
int SDL_PushEvent (SDL_Event *event);

Description
The event queue can actually be used as a two way communication channel. Not only can events be
read from the queue, but the user can also push their own events onto it.event is a pointer to the
event structure you wish to push onto the queue.

Note: Pushing device input events onto the queue doesn’t modify the state of the device within
SDL.

Return Value
Returns 0 on success or -1 if the event couldn’t be pushed.

Examples
SeeSDL_Event.

See Also
SDL_PollEvent , SDL_PeepEvents , SDL_Event

165

SDL_SetEventFilter

Name
SDL_SetEventFilter — Sets up a filter to process all events before they are posted to the event
queue.

Synopsis

#include "SDL.h"
void SDL_SetEventFilter (SDL_EventFilter filter);

Description
This function sets up a filter to process all events before they are posted to the event queue. This is a
very powerful and flexible feature. The filter is prototyped as:

typedef int (*SDL_EventFilter)(const SDL_Event *event);

If the filter returns 1, then the event will be added to the internal queue. If it returns 0, then the event
will be dropped from the queue. This allows selective filtering of dynamically.

There is one caveat when dealing with theSDL_QUITEVENTevent type. The event filter is only
called when the window manager desires to close the application window. If the event filter returns
1, then the window will be closed, otherwise the window will remain open if possible. If the quit
event is generated by an interrupt signal, it will bypass the internal queue and be delivered to the
application at the next event poll.

Note: Events pushed onto the queue with SDL_PushEvent or SDL_PeepEvents do not get
passed through the event filter.

Note: Be Careful! The event filter function may run in a different thread so be careful what you
do within it.

166

SDL_SetEventFilter

See Also
SDL_Event, SDL_GetEventFilter , SDL_PushEvent

167

SDL_GetEventFilter

Name
SDL_GetEventFilter — Retrieves a pointer to he event filter

Synopsis

#include "SDL.h"
SDL_EventFilter SDL_GetEventFilter (void);

Description
This function retrieces a pointer to the event filter that was previously set using
SDL_SetEventFilter . An SDL_EventFilter function is defined as:

typedef int (*SDL_EventFilter)(const SDL_Event *event);

Return Value
Returns a pointer to the event filter orNULL if no filter has been set.

See Also
SDL_Event, SDL_SetEventFilter

168

SDL_EventState

Name
SDL_EventState — This function allows you to set the state of processing certain events.

Synopsis

#include "SDL.h"
Uint8 SDL_EventState (Uint8 type, int state);

Description
This function allows you to set the state of processing certain eventtype ’s.

If state is set toSDL_IGNORE, that eventtype will be automatically dropped from the event
queue and will not be filtered.

If state is set toSDL_ENABLE, that eventtype will be processed normally.

If state is set toSDL_QUERY, SDL_EventState will return the current processing state of the
specified eventtype .

A list of eventtype ’s can be found in theSDL_Eventsection.

See Also
SDL_Event

169

SDL_GetKeyState

Name
SDL_GetKeyState — Get a snapshot of the current keyboard state

Synopsis

#include "SDL.h"
Uint8 * SDL_GetKeyState (int *numkeys);

Description
Gets a snapshot of the current keyboard state. The current state is return as a pointer to an array, the
size of this array is stored innumkeys . The array is indexed by theSDLK_* symbols. A value of 1
means the key is pressed and a value of 0 means its not.

Note: Use SDL_PumpEvents to update the state array.

Example

Uint8 *keystate = SDL_GetKeyState(NULL);
if (keystate[SDLK_RETURN]) printf("Return Key Pressed.\n");

See Also
SDL Key Symbols , SDL_PumpEvents

170

SDL_GetModState

Name
SDL_GetModState — Get the state of modifier keys.

Synopsis

#include "SDL.h"
SDLMod SDL_GetModState (void);

Description
Returns the current of the modifier keys (CTRL, ALT, etc.).

Return Value
The return value can be an OR’d combination of the SDLMod enum.

SDLMod

typedef enum {
KMOD_NONE = 0x0000,
KMOD_LSHIFT= 0x0001,
KMOD_RSHIFT= 0x0002,
KMOD_LCTRL = 0x0040,
KMOD_RCTRL = 0x0080,
KMOD_LALT = 0x0100,
KMOD_RALT = 0x0200,
KMOD_LMETA = 0x0400,
KMOD_RMETA = 0x0800,
KMOD_NUM = 0x1000,
KMOD_CAPS = 0x2000,
KMOD_MODE = 0x4000,

} SDLMod;

SDL also defines the following symbols for convenience:

#define KMOD_CTRL (KMOD_LCTRL|KMOD_RCTRL)
#define KMOD_SHIFT (KMOD_LSHIFT|KMOD_RSHIFT)
#define KMOD_ALT (KMOD_LALT|KMOD_RALT)
#define KMOD_META (KMOD_LMETA|KMOD_RMETA)

171

SDL_GetModState

See Also
SDL_GetKeyState

172

SDL_SetModState

Name
SDL_SetModState — Set the current key modifier state

Synopsis

#include "SDL.h"
void SDL_SetModState (SDLMod modstate);

Description
The inverse ofSDL_GetModState , SDL_SetModState allows you to impose modifier key states
on your application.

Simply pass your desired modifier states intomodstate . This value my be a logical OR’d
combination of the following:

typedef enum {
KMOD_NONE = 0x0000,
KMOD_LSHIFT= 0x0001,
KMOD_RSHIFT= 0x0002,
KMOD_LCTRL = 0x0040,
KMOD_RCTRL = 0x0080,
KMOD_LALT = 0x0100,
KMOD_RALT = 0x0200,
KMOD_LMETA = 0x0400,
KMOD_RMETA = 0x0800,
KMOD_NUM = 0x1000,
KMOD_CAPS = 0x2000,
KMOD_MODE = 0x4000,

} SDLMod;

See Also
SDL_GetModState

173

SDL_GetKeyName

Name
SDL_GetKeyName — Get the name of an SDL virtual keysym

Synopsis

#include "SDL.h"
char * SDL_GetKeyName(SDLKey key);

Description
Returns the SDL-defined name of theSDLKeykey .

See Also
SDLKey

174

SDL_EnableUNICODE

Name
SDL_EnableUNICODE — Enable UNICODE translation

Synopsis

#include "SDL.h"
int SDL_EnableUNICODE(int enable);

Description
Enables/Disables UNICODE keyboard translation.

If you wish to translate a keysym to it’s printable representation, you need to enable UNICODE
translation using this function (enable =0) and then look in theunicode member of the
SDL_keysymstructure. This value will be zero for keysyms that do not have a printable
representation. UNICODE translation is disabled by default as the conversion can cause a slight
overhead.

Return Value
Returns the previous translation mode.

See Also
SDL_keysym

175

SDL_EnableKeyRepeat

Name
SDL_EnableKeyRepeat — Set keyboard repeat rate.

Synopsis

#include "SDL.h"
int SDL_EnableKeyRepeat (int delay, int interval);

Description
Enables or disables the keyboard repeat rate.delay specifies how long the key must be pressed
before it begins repeating, it then repeats at the speed specified byinterval . Bothdelay and
interval are expressed in milliseconds.

Settingdelay to 0 disables key repeating completely. Good default values are
SDL_DEFAULT_REPEAT_DELAYand SDL_DEFAULT_REPEAT_INTERVAL.

Return Value
Returns 0 on success and -1 on failure.

176

SDL_GetMouseState

Name
SDL_GetMouseState — Retrieve the current state of the mouse

Synopsis

#include "SDL.h"
Uint8 SDL_GetMouseState (int *x, int *y);

Description
The current button state is returned as a button bitmask, which can be tested using the
SDL_BUTTON(X)macros, andx andy are set to the current mouse cursor position. You can pass
NULL for eitherx or y .

Example

SDL_PumpEvents();
if(SDL_GetMouseState(NULL, NULL)&SDL_BUTTON(1))

printf("Mouse Button 1(left) is pressed.\n");

See Also
SDL_GetRelativeMouseState , SDL_PumpEvents

177

SDL_GetRelativeMouseState

Name
SDL_GetRelativeMouseState — Retrieve the current state of the mouse

Synopsis

#include "SDL.h"
Uint8 SDL_GetRelativeMouseState (int *x, int *y);

Description
The current button state is returned as a button bitmask, which can be tested using the
SDL_BUTTON(X)macros, andx andy are set to the change in the mouse position since the last call
to SDL_GetRelativeMouseState or since event initialization. You can passNULL for eitherx or
y .

See Also
SDL_GetMouseState

178

SDL_GetAppState

Name
SDL_GetAppState — Get the state of the application

Synopsis

#include "SDL.h"
Uint8 SDL_GetAppState (void);

Description
This function returns the current state of the application. The value returned is a bitwise combination
of:

SDL_APPMOUSEFOCUS The application has mouse focus.

SDL_APPINPUTFOCUS The application has keyboard focus

SDL_APPACTIVE The application is visible

See Also
SDL_ActiveEvent

179

SDL_JoystickEventState

Name
SDL_JoystickEventState — Enable/disable joystick event polling

Synopsis

#include "SDL.h"
int SDL_JoystickEventState (int state);

Description
This function is used to enable or disable joystick event processing. With joystick event processing
disabled you will have to update joystick states withSDL_JoystickUpdate and read the joystick
information manually.state is eitherSDL_QUERY, SDL_ENABLEor SDL_IGNORE.

Note: Joystick event handling is prefered

Return Value
If state is SDL_QUERYthen the current state is returned, otherwise the new processingstate is
returned.

See Also
SDL Joystick Functions, SDL_JoystickUpdate , SDL_JoyAxisEvent, SDL_JoyBallEvent,
SDL_JoyButtonEvent, SDL_JoyHatEvent

180

Chapter 9. Joystick
Joysticks, and other similar input devices, have a very strong role in game playing and SDL provides
comprehensive support for them. Axes, Buttons, POV Hats and trackballs are all supported.

Joystick support is initialized by passed theSDL_INIT_JOYSTICK flag toSDL_Init . Once
initilized joysticks must be opened usingSDL_JoystickOpen .

While using the functions describe in this secton may seem like the best way to access and read from
joysticks, in most cases they aren’t. Ideally joysticks should be read using theeventsystem. To
enable this, you must set the joystick event processing state withSDL_JoystickEventState .
Joysticks must beopenedbefore they can be used of course.

Note: If you are not handling the joystick via the event queue then you must explicitly request a
joystick update by calling SDL_JoystickUpdate .

Note: Force Feedback is not yet support. Sam (slouken@libsdl.org) is soliciting suggestions
from people with force-feedback experience on the best wat to desgin the API.

SDL_NumJoysticks

Name
SDL_NumJoysticks — Count available joysticks.

Synopsis

#include "SDL.h"
int SDL_NumJoysticks (void);

Description
Counts the number of joysticks attached to the system.

181

SDL_NumJoysticks

Return Value
Returns the number of attached joysticks

See Also
SDL_JoystickName , SDL_JoystickOpen

182

SDL_JoystickName

Name
SDL_JoystickName — Get joystick name.

Synopsis

#include "SDL.h"
const char * SDL_JoystickName (int index);

Description
Get the implementation dependent name of joystick. Theindex parameter refers to the N’th
joystick on the system.

Return Value
Returns a char pointer to the joystick name.

Examples

/* Print the names of all attached joysticks */
int num_joy, i;
num_joy=SDL_NumJoysticks();
printf("%d joysticks found\n", num_joy);
for(i=0;i<num_joy;i++)

printf("%s\n", SDL_JoystickName(i);

See Also
SDL_JoystickOpen

183

SDL_JoystickOpen

Name
SDL_JoystickOpen — Opens a joystick for use.

Synopsis

#include "SDL.h"
SDL_Joystick * SDL_JoystickOpen (int index);

Description
Opens a joystick for use within SDL. Theindex refers to the N’th joystick in the system. A
joystick must be opened before it game be used.

Return Value
Returns a SDL_Joystick structure on success. NULL on failure.

Examples

SDL_Joystick *joy;
// Check for joystick
if(SDL_NumJoysticks()>0){

// Open joystick
joy=SDL_JoystickOpen(0);

if(joy)
{

printf("Opened Joystick 0\n");
printf("Name: %s\n", SDL_JoystickName(0));
printf("Number of Axes: %s\n", SDL_JoystickNumAxes(joy));
printf("Number of Buttons: %s\n", SDL_JoystickNumButtons(joy));
printf("Number of Balls: %s\n", SDL_JoystickNumBalls(joy));

}
else

printf("Couldn’t open Joystick 0\n");

184

SDL_JoystickOpen

// Close if opened
if(SDL_JoystickOpened(0))

SDL_JoystickClose(joy);
}

See Also
SDL_JoystickClose

185

SDL_JoystickOpened

Name
SDL_JoystickOpened — Determine if a joystick has been opened

Synopsis

#include "SDL.h"
int SDL_JoystickOpened (int index);

Description
Determines whether a joystick has already been opened within the application.index refers to the
N’th joystick on the system.

Return Value
Returns 1 if the joystick has been opened, or 0 if it has not.

See Also
SDL_JoystickOpen , SDL_JoystickClose

186

SDL_JoystickIndex

Name
SDL_JoystickIndex — Get the index of an SDL_Joystick.

Synopsis

#include "SDL.h"
int SDL_JoystickIndex (SDL_Joystick *joystick);

Description
Returns the index of a given SDL_Joystick structure.

Return Value
Index number of the joystick.

See Also
SDL_JoystickOpen

187

SDL_JoystickNumAxes

Name
SDL_JoystickNumAxes — Get the number of joystick axes

Synopsis

#include "SDL.h"
int SDL_JoystickNumAxes (SDL_Joystick *joystick);

Description
Return the number of axes available from a previously opened SDL_Joystick.

Return Value
Number of axes.

See Also
SDL_JoystickGetAxis , SDL_JoystickOpen

188

SDL_JoystickNumBalls

Name
SDL_JoystickNumBalls — Get the number of joystick trackballs

Synopsis

#include "SDL.h"
int SDL_JoystickNumBalls (SDL_Joystick *joystick);

Description
Return the number of trackballs available from a previously opened SDL_Joystick.

Return Value
Number of trackballs.

See Also
SDL_JoystickGetBall , SDL_JoystickOpen

189

SDL_JoystickNumHats

Name
SDL_JoystickNumHats — Get the number of joystick hats

Synopsis

#include "SDL.h"
int SDL_JoystickNumHats (SDL_Joystick *joystick);

Description
Return the number of hats available from a previously opened SDL_Joystick.

Return Value
Number of hats.

See Also
SDL_JoystickGetHat , SDL_JoystickOpen

190

SDL_JoystickNumButtons

Name
SDL_JoystickNumButtons — Get the number of joysitck buttons

Synopsis

#include "SDL.h"
int SDL_JoystickNumButtons (SDL_Joystick *joystick);

Description
Return the number of buttons available from a previously opened SDL_Joystick.

Return Value
Number of buttons.

See Also
SDL_JoystickGetButton , SDL_JoystickOpen

191

SDL_JoystickUpdate

Name
SDL_JoystickUpdate — Updates the state of all joysticks

Synopsis

#include "SDL.h"
void SDL_JoystickUpdate (void);

Description
Updates the state(position, buttons, etc.) of all open joysticks. If joystick events have been enabled
with SDL_JoystickEventState then this is called automatically in the event loop.

See Also
SDL_JoystickEventState

192

SDL_JoystickGetAxis

Name
SDL_JoystickGetAxis — Get the current state of an axis

Synopsis

#include "SDL.h"
Sint16 SDL_JoystickGetAxis (SDL_Joystick *joystick, int axis);

Description
SDL_JoystickGetAxis returns the current state of the givenaxis on the givenjoystick .

On most modern joysticks the X axis is usually represented byaxis 0 and the Y axis byaxis 1.
The value returned bySDL_JoystickGetAxis is a signed integer (-32768 to 32768) representing
the current position of theaxis , it maybe necessary to impose certain tolerances on these values to
account for jitter. It is worth noting that some joysticks use axes 2 and 3 for extra buttons.

Return Value
Returns a 16-bit signed integer representing the current position of theaxis .

Examples

Sint16 x_move, y_move;
SDL_Joystick *joy1;
.
.
x_move=SDL_JoystickGetAxis(joy1, 0);
y_move=SDL_JoystickGetAxis(joy1, 1);

193

SDL_JoystickGetAxis

See Also
SDL_JoystickNumAxes

194

SDL_JoystickGetHat

Name
SDL_JoystickGetHat — Get the current state of a joystick hat

Synopsis

#include "SDL.h"
Uint8 SDL_JoystickGetHat (SDL_Joystick *joystick, int hat);

Description
SDL_JoystickGetHat returns the current state of the givenhat on the givenjoystick .

Return Value
The current state is returned as a Uint8 which is defined as an OR’d combination of one or more of
the following

SDL_HAT_CENTERED
SDL_HAT_UP
SDL_HAT_RIGHT
SDL_HAT_DOWN
SDL_HAT_LEFT
SDL_HAT_RIGHTUP
SDL_HAT_RIGHTDOWN
SDL_HAT_LEFTUP
SDL_HAT_LEFTDOWN

See Also
SDL_JoystickNumHats

195

SDL_JoystickGetButton

Name
SDL_JoystickGetButton — Get the current state of a given button on a given joystick

Synopsis

#include "SDL.h"
Uint8 SDL_JoystickGetButton (SDL_Joystick *joystick, int button);

Description
SDL_JoystickGetButton returns the current state of the givenbutton on the givenjoystick .

Return Value
1 if the button is pressed. Otherwise, 0.

See Also
SDL_JoystickNumButtons

196

SDL_JoystickGetBall

Name
SDL_JoystickGetBall — Get relative trackball motion

Synopsis

#include "SDL.h"
int SDL_JoystickGetBall (SDL_Joystick *joystick, int ball, int *dx, int
*dy);

Description
Get theball axis change.

Trackballs can only return relative motion since the last call toSDL_JoystickGetBall , these
motion deltas a placed intodx anddy .

Return Value
Returns 0 on success or -1 on failure

Examples

int delta_x, delta_y;
SDL_Joystick *joy;
.
.
.
SDL_JoystickUpdate();
if(SDL_JoystickGetBall(joy, 0, &delta_x, &delta_y)==-1)

printf("TrackBall Read Error!\n");
printf("Trackball Delta- X:%d, Y:%d\n", delta_x, delta_y);

197

SDL_JoystickGetBall

See Also
SDL_JoystickNumBalls

198

SDL_JoystickClose

Name
SDL_JoystickClose — Closes a previously opened joystick

Synopsis

#include "SDL.h"
void SDL_JoystickClose (SDL_Joystick *joystick);

Description
Close ajoystick that was previously opened withSDL_JoystickOpen .

See Also
SDL_JoystickOpen , SDL_JoystickOpened

199

Chapter 10. Audio
Sound on the computer is translated from waves that you hear into a series of values, or samples,
each representing the amplitude of the wave. When these samples are sent in a stream to a sound
card, an approximation of the original wave can be recreated. The more bits used to represent the
amplitude, and the greater frequency these samples are gathered, the closer the approximated sound
is to the original, and the better the quality of sound.

This library supports both 8 and 16 bit signed and unsigned sound samples, at frequencies ranging
from 11025 Hz to 44100 Hz, depending on the underlying hardware. If the hardware doesn’t support
the desired audio format or frequency, it can be emulated if desired (SeeSDL_OpenAudio())

A commonly supported audio format is 16 bits per sample at 22050 Hz.

SDL_AudioSpec

Name
SDL_AudioSpec — Audio Specification Structure

Structure Definition

typedef struct{
int freq;
Uint16 format;
Uint8 channels;
Uint8 silence;
Uint16 samples;
Uint32 size;
void (*callback)(void *userdata, Uint8 *stream, int len);
void *userdata;

} SDL_AudioSpec;

Structure Data

freq Audio frequency in samples per second

format Audio data format

channels Number of channels: 1 mono, 2 stereo

silence Audio buffer silence value (calculated)

samples Audio buffer size in samples

200

SDL_AudioSpec

size Audio buffer size in bytes (calculated)

callback(..) Callback function for filling the audio buffer

userdata Pointer the user data which is passed to the
callback function

Description
The SDL_AudioSpec structure is used to describe the format of some audio data. This structure is
used bySDL_OpenAudio andSDL_LoadWAV. While all fields are used bySDL_OpenAudio only
freq , format , samples andchannels are used bySDL_LoadWAV. We will detail these
common members here.

freq The number of samples sent to the sound device
every second. Common values are 11025, 22050
and 44100. The higher the better.

201

SDL_AudioSpec

format Specifies the size and type of each sample
elementAUDIO_U8

Unsigned 8-bit samples

AUDIO_S8

Signed 8-bit samples

AUDIO_U16or AUDIO_U16LSB

Unsigned 16-bit little-endian samples

AUDIO_S16 or AUDIO_S16LSB

Signed 16-bit little-endian samples

AUDIO_U16MSB

Unsigned 16-bit big-endian samples

AUDIO_S16MSB

Signed 16-bit big-endian samples

AUDIO_U16SYS

EitherAUDIO_U16LSBor
AUDIO_U16MSBdepending on you systems
endianness

AUDIO_S16SYS

EitherAUDIO_S16LSBor
AUDIO_S16MSBdepending on you systems
endianness

channels The number of seperate sound channels. 1 is
mono (single channel), 2 is stereo (dual channel).

202

SDL_AudioSpec

samples When used withSDL_OpenAudio this refers to
the size of the audio buffer in samples. A sample a
chunk of audio data of the size specified in
format mulitplied by the number of channels.
When the SDL_AudioSpec is used with
SDL_LoadWAVsamples is set to 4096.

See Also
SDL_OpenAudio , SDL_LoadWAV

203

SDL_OpenAudio

Name
SDL_OpenAudio — Opens the audio device with the desired parameters.

Synopsis

#include "SDL.h"
int SDL_OpenAudio (SDL_AudioSpec *desired, SDL_AudioSpec *obtained);

Description
This function opens the audio device with thedesired parameters, and returns 0 if successful,
placing the actual hardware parameters in the structure pointed to byobtained . If obtained is
NULL, the audio data passed to the callback function will be guaranteed to be in the requested
format, and will be automatically converted to the hardware audio format if necessary. This function
returns -1 if it failed to open the audio device, or couldn’t set up the audio thread.

To open the audio device adesired SDL_AudioSpecmust be created.

SDL_AudioSpec *desired;
.
.
desired=(SDL_AudioSpec *)malloc(sizeof(SDL_AudioSpec));

You must then fill this structure with your desired audio specifications.

desired->freq

The desired audio frequency in samples-per-second.

desired->format

The desired audio format (seeSDL_AudioSpec)

desired->samples

The desired size of the audio buffer in samples. This number should be a power of two, and
may be adjusted by the audio driver to a value more suitable for the hardware. Good values
seem to range between 512 and 8192 inclusive, depending on the application and CPU speed.
Smaller values yield faster response time, but can lead to underflow if the application is doing
heavy processing and cannot fill the audio buffer in time. A stereo sample consists of both right

204

SDL_OpenAudio

and left channels in LR ordering. Note that the number of samples is directly related to time by
the following formula: ms = (samples*1000)/freq

desired->callback

This should be set to a function that will be called when the audio device is ready for more data.
It is passed a pointer to the audio buffer, and the length in bytes of the audio buffer. This
function usually runs in a separate thread, and so you should protect data structures that it
accesses by callingSDL_LockAudio andSDL_UnlockAudio in your code. The callback
prototype is:

void callback(void *userdata, Uint8 *stream, int len);

userdata is the pointer stored inuserdata field of the SDL_AudioSpec.stream is a
pointer to the audio buffer you want to fill with information andlen is the length of the audio
buffer in bytes.

desired->userdata

This pointer is passed as the first parameter to thecallback function.

SDL_OpenAudio reads these fields from thedesired SDL_AudioSpec structure pass to the
function and attempts to find an audio configuration matching yourdesired . As mentioned above,
if the obtained parameter isNULL then SDL with convert from yourdesired audio settings to
the hardware settings as it plays.

If obtained is NULL then thedesired SDL_AudioSpec is your working specification, otherwise
theobtained SDL_AudioSpec becomes the working specification and thedesirec specification
can be deleted. The data in the working specification is used when building SDL_AudioCVT’s for
converting loaded data to the hardware format.

SDL_OpenAudio calculates thesize andsilence fields for both thedesired andobtained
specifications. Thesize field stores the total size of the audio buffer in bytes, while thesilence
stores the value used to represent silence in the audio buffer

The audio device starts out playingsilence when it’s opened, and should be enabled for playing
by callingSDL_PauseAudio (0) when you are ready for your audiocallback function to be
called. Since the audio driver may modify the requestedsize of the audio buffer, you should
allocate any local mixing buffers after you open the audio device.

Examples

/* Prototype of our callback function */
void my_audio_callback(void *userdata, Uint8 *stream, int len);

/* Open the audio device */
SDL_AudioSpec *desired, *obtained;
SDL_AudioSpec *hardware_spec;

205

SDL_OpenAudio

/* Allocate a desired SDL_AudioSpec */
desired=(SDL_AudioSpec *)malloc(sizeof(SDL_AudioSpec));

/* Allocate space for the obtained SDL_AudioSpec */
obtained=(SDL_AudioSpec *)malloc(sizeof(SDL_AudioSpec));

/* 22050Hz - FM Radio quality */
desired->freq=22050;

/* 16-bit signed audio */
desired->format=AUDIO_S16LSB;

/* Large audio buffer reduces risk of dropouts but increases response time */
desired->samples=8192;

/* Our callback function */
desired->callback=my_audio_callback;

desired->userdata=NULL;

/* Open the audio device */
if (SDL_OpenAudio(desired, obtained) < 0){

fprintf(stderr, "Couldn’t open audio: %s\n", SDL_GetError());
exit(-1);

}
/* desired spec is no longer needed */
free(desired);
hardware_spec=obtained;
.
.
/* Prepare callback for playing */
.
.
.
/* Start playing */
SDL_PauseAudio(0);

See Also
SDL_AudioSpec , SDL_LockAudio , SDL_UnlockAudio , SDL_PauseAudio

206

SDL_PauseAudio

Name
SDL_PauseAudio — Pauses and unpauses the audio callback processing

Synopsis

#include "SDL.h"
void SDL_PauseAudio (int pause_on);

Description
This function pauses and unpauses the audio callback processing. It should be called with
pause_on =0 after opening the audio device to start playing sound. This is so you can safely
initialize data for your callback function after opening the audio device. Silence will be written to the
audio device during the pause.

See Also
SDL_GetAudioStatus , SDL_OpenAudio

207

SDL_GetAudioStatus

Name
SDL_GetAudioStatus — Get the current audio state

Synopsis

#include "SDL.h"
SDL_audiostatus SDL_GetAudioStatus (void);

Description

typedef enum{
SDL_AUDIO_STOPPED,
SDL_AUDIO_PAUSED,
SDL_AUDIO_PLAYING

} SDL_audiostatus;

Returns eitherSDL_AUDIO_STOPPED, SDL_AUDIO_PAUSEDor SDL_AUDIO_PLAYINGdepending on
the current audio state.

See Also
SDL_PauseAudio

208

SDL_LoadWAV

Name
SDL_LoadWAV— Load a WAVE file

Synopsis

#include "SDL.h"
SDL_AudioSpec * SDL_LoadWAV(const char *file, SDL_AudioSpec *spec, Uint8
**audio_buf, Uint32 *audio_len);

Description
SDL_LoadWAVThis function loads a WAVEfile into memory.

If this function succeeds, it returns the givenSDL_AudioSpec , filled with the audio data format of
the wave data, and setsaudio_buf to amalloc ’d buffer containing the audio data, and sets
audio_len to the length of that audio buffer, in bytes. You need to free the audio buffer with
SDL_FreeWAVwhen you are done with it.

This function returnsNULLand sets the SDL error message if the wave file cannot be opened, uses
an unknown data format, or is corrupt. Currently raw, MS-ADPCM and IMA-ADPCM WAVE files
are supported.

Example

SDL_AudioSpec wav_spec;
Uint32 wav_length;
Uint8 *wav_buffer;

/* Load the WAV */
if(SDL_LoadWAV("test.wav", &wav_spec, &wav_buffer, &wav_length) == NULL){

fprintf(stderr, "Could not open test.wav: %s\n", SDL_GetError());
exit(-1);

}
.
.
.
/* Do stuff with the WAV */
.

209

SDL_LoadWAV

.
/* Free It */
SDL_FreeWAV(wav_buffer);

See Also
SDL_AudioSpec, SDL_OpenAudio , SDL_FreeWAV

210

SDL_FreeWAV

Name
SDL_FreeWAV— Frees previously opened WAV data

Synopsis

#include "SDL.h"
void SDL_FreeWAV(Uint8 *audio_buf);

Description
After a WAVE file has been opened withSDL_LoadWAVits data can eventually be freed with
SDL_FreeWAV. audio_buf is a pointer to the buffer created bySDL_LoadWAV.

See Also
SDL_LoadWAV

211

SDL_AudioCVT

Name
SDL_AudioCVT — Audio Conversion Structure

Structure Definition

typedef struct{
int needed;
Uint16 src_format;
Uint16 dest_format;
double rate_incr;
Uint8 *buf;
int len;
int len_cvt;
int len_mult;
double len_ratio;
void (*filters[10])(struct SDL_AudioCVT *cvt, Uint16 format);
int filter_index;

} SDL_AudioCVT;

Structure Data

needed Set to one if the conversion is possible

src_format Audio format of the source

dest_format Audio format of the destination

rate_incr Rate conversion increment

buf Audio buffer

len Length of the original audio buffer in bytes

len_cvt Length of converted audio buffer in bytes
(calculated)

len_mult buf must belen * len_mult bytes in
size(calculated)

len_ratio Final audio size islen * len_ratio

filters[10](..) Pointers to functions needed for this conversion

filter_index Current conversion function

212

SDL_AudioCVT

Description
The SDL_AudioCVT is used to convert audio data between different formats. A SDL_AudioCVT
structure is created with theSDL_BuildAudioCVT function, while the actual conversion is done by
theSDL_ConvertAudio function.

Many of the fields in the SDL_AudioCVT structure should be considered private and their function
will not be discussed here.

Uint8 *buf

This points to the audio data that will be used in the conversion. It is both the source and the
destination, which means the converted audio data overwrites the original data. It also means
that the converted data may be larger than the original data (if you were converting from 8-bit to
16-bit, for instance), so you must ensurebuf is large enough. See below.

int len

This is the length of the original audio data in bytes.

int len_mult

As explained above, the audio buffer needs to be big enough to store the converted data, which
may be bigger than the original audio data. The length ofbuf should belen * len_mult .

doublelen_ratio

When you have finished converting your audio data, you need to know how much of your audio
buffer is valid.len * len_ratio is the size of the converted audio data in bytes. This is very
similar to len_mult , however when the convert audio data is shorter than the original
len_mult would be 1.len_ratio , on the other hand, would be a fractional number
between 0 and 1.

See Also
SDL_BuildAudioCVT , SDL_ConvertAudio , SDL_AudioSpec

213

SDL_BuildAudioCVT

Name
SDL_BuildAudioCVT — Initializes a SDL_AudioCVT structure for conversion

Synopsis

#include "SDL.h"
int SDL_BuildAudioCVT (SDL_AudioCVT *cvt, Uint16 src_format, Uint8
src_channels, int src_rate, Uint16 dst_format, Uint8 dst_channels, int
dst_rate);

Description
Before anSDL_AudioCVTstructure can be used to convert audio data it must be initialized with
source and destination information.

src_format anddst_format are the source and destination format of the conversion. (For
information on audio formats seeSDL_AudioSpec). src_channels anddst_channels are
the number of channels in the source and destination formats. Finally,src_rate anddst_rate
are the frequency or samples-per-second of the source and destination formats. Once again, see
SDL_AudioSpec.

Return Values
Returns -1 if the filter could not be built or 1 if it could.

Examples
SeeSDL_ConvertAudio .

See Also
SDL_ConvertAudio , SDL_AudioCVT

214

SDL_ConvertAudio

Name
SDL_ConvertAudio — Convert audio data to a desired audio format.

Synopsis

#include "SDL.h"
int SDL_ConvertAudio (SDL_AudioCVT *cvt);

Description
SDL_ConvertAudio takes one parameter,cvt , which was previously initilized. Initilizing a
SDL_AudioCVTis a two step process. First of all, the structure must be passed to
SDL_BuildAudioCVT along with source and destination format parameters. Secondly, the
cvt->buf and cvt->len fields must be setup. cvt->buf should point to the audio data and cvt->len
should be set to the length of the audio data in bytes. Remember, the length of the buffer pointed to
by buf show belen * len_mult bytes in length.

Once the SDL_AudioCVTstructure is initilized then we can pass it toSDL_ConvertAudio , which
will convert the audio data pointer to by cvt->buf . If SDL_ConvertAudio returned 0 then the
conversion was completed successfully, otherwise -1 is returned.

If the conversion completed successfully then the converted audio data can be read from cvt->buf .
The amount of valid, converted, audio data in the buffer is equal to cvt->len *cvt ->len_ratio.

Examples

/* Converting some WAV data to hardware format */
void my_audio_callback(void *userdata, Uint8 *stream, int len);

SDL_AudioSpec *desired, *obtained;
SDL_AudioSpec wav_spec;
SDL_AudioCVT wav_cvt;
Uint32 wav_len;
Uint8 *wav_buf;
int ret;

/* Allocated audio specs */
desired=(SDL_AudioSpec *)malloc(sizeof(SDL_AudioSpec));

215

SDL_ConvertAudio

obtained=(SDL_AudioSpec *)malloc(sizeof(SDL_AudioSpec));

/* Set desired format */
desired->freq=22050;
desired->format=AUDIO_S16LSB;
desired->samples=8192;
desired->callback=my_audio_callback;
desired->userdata=NULL;

/* Open the audio device */
if (SDL_OpenAudio(desired, obtained) < 0){

fprintf(stderr, "Couldn’t open audio: %s\n", SDL_GetError());
exit(-1);

}

free(desired);

/* Load the test.wav */
if(SDL_LoadWAV("test.wav", &wav_spec, &wav_buf, &wav_len) == NULL){

fprintf(stderr, "Could not open test.wav: %s\n", SDL_GetError());
SDL_CloseAudio();
free(obtained);
exit(-1);

}

/* Build AudioCVT */
ret = SDL_BuildAudioCVT(&wav_cvt,

wav_spec.format, wav_spec.channels, wav_spec.freq,
obtained->format, obtained->channels, obtained->freq);

/* Check that the convert was built */
if(ret==-1){

fprintf(stderr, "Couldn’t build converter!\n");
SDL_CloseAudio();
free(obtained);
SDL_FreeWAV(wav_buf);

}

/* Setup for conversion */
wav_cvt.buf=(Uint8 *)malloc(wav_len*wav_cvt.len_mult);
wav_cvt.len=wav_len;
memcpy(wav_cvt.buf, wav_buf, wav_len);

/* We can delete to original WAV data now */
SDL_FreeWAV(wav_buf);

/* And now we’re ready to convert */
SDL_ConvertAudio(&wav_cvt);

216

SDL_ConvertAudio

/* do whatever */
.
.
.
.

See Also
SDL_BuildAudioCVT , SDL_AudioCVT

217

SDL_MixAudio

Name
SDL_MixAudio — Mix audio data

Synopsis

#include "SDL.h"
void SDL_MixAudio (Uint8 *dst, Uint8 *src, Uint32 len, int volume);

Description
This function takes two audio buffers oflen bytes each of the playing audio format and mixes them,
performing addition, volume adjustment, and overflow clipping. Thevolume ranges from 0 to
SDL_MIX_MAXVOLUMEand should be set to the maximum value for full audio volume. Note this does
not change hardware volume. This is provided for convenience -- you can mix your own audio data.

See Also
SDL_OpenAudio

218

SDL_LockAudio

Name
SDL_LockAudio — Lock out the callback function

Synopsis

#include "SDL.h"
void SDL_LockAudio (void);

Description
The lock manipulated by these functions protects the callback function. During a LockAudio period,
you can be guaranteed that the callback function is not running. Do not call these from the callback
function or you will cause deadlock.

See Also
SDL_OpenAudio

219

SDL_UnlockAudio

Name
SDL_UnlockAudio — Unlock the callback function

Synopsis

#include "SDL.h"
void SDL_UnlockAudio (void);

Description
Unlocks a previousSDL_LockAudio call.

See Also
SDL_OpenAudio

220

SDL_CloseAudio

Name
SDL_CloseAudio — Shuts down audio processing and closes the audio device.

Synopsis

#include "SDL.h"
void SDL_CloseAudio (void);

Description
This function shuts down audio processing and closes the audio device.

See Also
SDL_OpenAudio

221

Chapter 11. CD-ROM
SDL supports audio control of up to 32 local CD-ROM drives at once.

You use this API to perform all the basic functions of a CD player, including listing the tracks,
playing, stopping, and ejecting the CD-ROM. (Currently, multi-changer CD drives are not
supported.)

Before you call any of the SDL CD-ROM functions, you must first call
"SDL_Init(SDL_INIT_CDROM) ", which scans the system for CD-ROM drives, and sets the
program up for audio control. Check the return code, which should be 0, to see if there were any
errors in starting up.

After you have initialized the library, you can find out how many drives are available using the
SDL_CDNumDrives() function. The first drive listed is the system default CD-ROM drive. After
you have chosen a drive, and have opened it withSDL_CDOpen() , you can check the status and start
playing if there’s a CD in the drive.

A CD-ROM is organized into one or more tracks, each consisting of a certain number of "frames".
Each frame is ~2K in size, and at normal playing speed, a CD plays 75 frames per second. SDL
works with the number of frames on a CD, but this can easily be converted to the more familiar
minutes/seconds format by using theFRAMES_TO_MSF()macro.

SDL_CDNumDrives

Name
SDL_CDNumDrives — Returns the number of CD-ROM drives on the system.

Synopsis

#include "SDL.h"
int SDL_CDNumDrives (void);

Description
Returns the number of CD-ROM drives on the system.

222

SDL_CDNumDrives

See Also
SDL_CDOpen

223

SDL_CDName

Name
SDL_CDName— Returns a human-readable, system-dependent identifier for the CD-ROM.

Synopsis

#include "SDL.h"
const char * SDL_CDName(int drive);

Description
Returns a human-readable, system-dependent identifier for the CD-ROM.drive is the index of the
drive. Drive indices start to 0 and end atSDL_CDNumDrives() -1.

Examples

• "/dev/cdrom"

• "E:"

• "/dev/disk/ide/1/master"

See Also
SDL_CDNumDrives

224

SDL_CDOpen

Name
SDL_CDOpen— Opens a CD-ROM drive for access.

Synopsis

#include "SDL.h"
SDL_CD *SDL_CDOpen(int drive);

Description
Opens a CD-ROM drive for access. It returns aSDL_CDstructure on success, orNULL if the drive
was invalid or busy. This newly opened CD-ROM becomes the default CD used when other CD
functions are passed aNULLCD-ROM handle.

Drives are numbered starting with 0. Drive 0 is the system default CD-ROM.

Examples

SDL_CD *cdrom;
int cur_track;
int min, sec, frame;
SDL_Init(SDL_INIT_CDROM);
atexit(SDL_Quit);

/* Check for CD drives */
if(!SDL_CDNumDrives()){

/* None found */
fprintf(stderr, "No CDROM devices available\n");
exit(-1);

}

/* Open the default drive */
cdrom=SDL_CDOpen(0);

/* Did if open? Check if cdrom is NULL */
if(!cdrom){

fprintf(stderr, "Couldn’t open drive: %s\n", SDL_GetError());
exit(-1);

225

SDL_CDOpen

}

/* Print Volume info */
printf("Name: %s\n", SDL_CDName(0));
printf("Tracks: %d\n", cdrom->numtracks);
for(cur_track=0;cur_track < cdrom->numtracks; cur_track++){

FRAMES_TO_MSF(cdrom->track[cur_track].length, &min, &sec, &frame);
printf("\tTrack %d: Length %d:%d\n", cur_track, min, sec);

}

SDL_CDClose(cdrom);

See Also
SDL_CD, SDL_CDtrack, SDL_CDClose

226

SDL_CDStatus

Name
SDL_CDStatus — Returns the current status of the given drive.

Synopsis

#include "SDL.h"
CDstatus SDL_CDStatus (SDL_CD *cdrom);
/* Given a status, returns true if there’s a disk in the drive */
#define CD_INDRIVE(status) ((int)status > 0)

Description
This function returns the current status of the given drive. Status is described like so:

typedef enum {
CD_TRAYEMPTY,
CD_STOPPED,
CD_PLAYING,
CD_PAUSED,
CD_ERROR = -1

} CDstatus;

If the drive has a CD in it, the table of contents of the CD and current play position of the CD will be
stored in the SDL_CD structure.

The macroCD_INDRIVE is provided for convenience, and given a status returns true if there’s a disk
in the drive.

Note: SDL_CDStatus also updates the SDL_CD structure passed to it.

Example

int playTrack(int track)
{

227

SDL_CDStatus

int playing = 0;

if (CD_INDRIVE(SDL_CDStatus(cdrom))) {
/* clamp to the actual number of tracks on the CD */

if (track >= cdrom->numtracks) {
track = cdrom->numtracks-1;

}

if (SDL_CDPlayTracks(cdrom, track, 0, 1, 0) == 0) {
playing = 1;

}
}
return playing;

}

See Also
SDL_CD

228

SDL_CDPlay

Name
SDL_CDPlay — Play a CD

Synopsis

#include "SDL.h"
int SDL_CDPlay (SDL_CD *cdrom, int start, int length);

Description
Plays the givencdrom , starting a framestart for length frames.

Return Values
Returns 0 on success, or -1 on an error.

See Also
SDL_CDPlayTracks , SDL_CDStop

229

SDL_CDPlayTracks

Name
SDL_CDPlayTracks — Play the given CD track(s)

Synopsis

#include "SDL.h"
int SDL_CDPlayTracks (SDL_CD *cdrom, int start_track, int start_frame, int
ntracks, int nframes));

Description
SDL_CDPlayTracks plays the given CD starting at trackstart_track , for ntracks tracks.

start_frame is the frame offset, from the beginning of thestart_track , at which to start.
nframes is the frame offset, from the beginning of the last track (start_track +ntracks), at
which to end playing.

SDL_CDPlayTracks should only be called after callingSDL_CDStatus to get track information
about the CD.

Note: Data tracks are ignored.

Return Value
Returns 0, or -1 if there was an error.

Examples

/* assuming cdrom is a previously opened device */
/* Play the entire CD */
if(CD_INDRIVE(SDL_CDStatus(cdrom)))

SDL_CDPlayTracks(cdrom, 0, 0, 0, 0);

/* Play the first track */

230

SDL_CDPlayTracks

if(CD_INDRIVE(SDL_CDStatus(cdrom)))
SDL_CDPlayTracks(cdrom, 0, 0, 1, 0);

/* Play first 15 seconds of the 2nd track */
if(CD_INDRIVE(SDL_CDStatus(cdrom)))

SDL_CDPlayTracks(cdrom, 1, 0, 0, CD_FPS*15);

See Also
SDL_CDPlay , SDL_CDStatus , SDL_CD

231

SDL_CDPause

Name
SDL_CDPause— Pauses a CDROM

Synopsis

#include "SDL.h"
int SDL_CDPause(SDL_CD *cdrom);

Description
Pauses play on the givencdrom .

Return Value
Returns 0 on success, or -1 on an error.

See Also
SDL_CDPlay , SDL_CDResume

232

SDL_CDResume

Name
SDL_CDResume— Resumes a CDROM

Synopsis

#include "SDL.h"
int SDL_CDResume(SDL_CD *cdrom);

Description
Resumes play on the givencdrom .

Return Value
Returns 0 on success, or -1 on an error.

See Also
SDL_CDPlay , SDL_CDPause

233

SDL_CDStop

Name
SDL_CDStop — Stops a CDROM

Synopsis

#include "SDL.h"
int SDL_CDStop(SDL_CD *cdrom);

Description
Stops play on the givencdrom .

Return Value
Returns 0 on success, or -1 on an error.

See Also
SDL_CDPlay ,

234

SDL_CDEject

Name
SDL_CDEject — Ejects a CDROM

Synopsis

#include "SDL.h"
int SDL_CDEject (SDL_CD *cdrom);

Description
Ejects the givencdrom .

Return Value
Returns 0 on success, or -1 on an error.

See Also
SDL_CD

235

SDL_CDClose

Name
SDL_CDClose — Closes a SDL_CD handle

Synopsis

#include "SDL.h"
void SDL_CDClose(SDL_CD *cdrom);

Description
Closes the givencdrom handle.

See Also
SDL_CDOpen, SDL_CD

236

SDL_CD

Name
SDL_CD— CDROM Drive Information

Structure Definition

typedef struct{
int id;
CDstatus status;
int numtracks;
int cur_track;
int cur_frame;
SDL_CDtrack track[SDL_MAX_TRACKS+1];

} SDL_CD;

Structure Data

id Private drive identifier

status Drive status

numtracks Number of tracks on the CD

cur_track Current track

cur_frame Current frame offset within the track

track [SDL_MAX_TRACKS+1] Array of track descriptions. (seeSDL_CDtrack)

Description
An SDL_CD structure is returned bySDL_CDOpen. It represents an opened CDROM device and
stores information on the layout of the tracks on the disc.

A frame is the base data unit of a CD.CD_FPSframes is equal to 1 second of music. SDL provides
two macros for converting between time and frames:FRAMES_TO_MSF(f, M,S,F) and
MSF_TO_FRAMES.

Examples

int min, sec, frame;
int frame_offset;

237

SDL_CD

FRAMES_TO_MSF(cdrom->cur_frame, &min, &sec, &frame);
printf("Current Position: %d minutes, %d seconds, %d frames\n", min, sec, frame);

frame_offset=MSF_TO_FRAMES(min, sec, frame);

See Also
SDL_CDOpen, SDL_CDtrack

238

SDL_CDtrack

Name
SDL_CDtrack — CD Track Information Structure

Structure Definition

typedef struct{
Uint8 id;
Uint8 type;
Uint32 length;
Uint32 offset;

} SDL_CDtrack;

Structure Data

id Track number (0-99)

type SDL_AUDIO_TRACKor SDL_DATA_TRACK

length Length, in frames, of this track

offset Frame offset to the beginning of this track

Description
SDL_CDtrack stores data on each track on a CD, its fields should be pretty self explainatory. It is a
member a theSDL_CDstructure.

Note: Frames can be converted to standard timings. There are CD_FPSframes per second, so
SDL_CDtrack.length /CD_FPS=length_in_seconds.

See Also
SDL_CD

239

Chapter 12. Multi-threaded Programming
SDL provides functions for creating threads, mutexes, semphores and condition variables.

In general, you must be very aware of concurrency and data integrity issues when writing
multi-threaded programs. Some good guidelines include:

• Don’t call SDL video/event functions from separate threads

• Don’t use any library functions in separate threads

• Don’t perform any memory management in separate threads

• Lock global variables which may be accessed by multiple threads

• Never terminate threads, always set a flag and wait for them to quit

• Think very carefully about all possible ways your code may interact

Note: SDL’s threading is not implemented on MacOS, due to that lack of preemptive thread
support (eck!)

SDL_CreateThread

Name
SDL_CreateThread — Creates a new thread of execution that shares its parent’s properties.

Synopsis

#include "SDL.h"
#include "SDL_thread.h"
SDL_Thread * SDL_CreateThread (int (*fn)(void *), void *data);

240

SDL_CreateThread

Description
SDL_CreateThread creates a new thread of execution that shares all of its parent’s global memory,
signal handlers, file descriptors, etc, and runs the functionfn passed the void pointerdata The
thread quits when this function returns.

See Also
SDL_KillThread

241

SDL_ThreadID

Name
SDL_ThreadID — Get the 32-bit thread identifier for the current thread.

Synopsis

#include "SDL.h"
#include "SDL_thread.h"
Uint32 SDL_ThreadID (void);

Description
Get the 32-bit thread identifier for the current thread.

242

SDL_GetThreadID

Name
SDL_GetThreadID — Get the SDL thread ID of a SDL_Thread

Synopsis

#include "SDL.h"
#include "SDL_thread.h"
Uint32 SDL_GetThreadID (SDL_Thread *thread);

Description
Returns the ID of a SDL_Thread created bySDL_CreateThread.

See Also
SDL_CreateThread

243

SDL_WaitThread

Name
SDL_WaitThread — Wait for a thread to finish.

Synopsis

#include "SDL.h"
#include "SDL_thread.h"
void SDL_WaitThread (SDL_Thread *thread, int *status);

Description
Wait for a thread to finish (timeouts are not supported).

Return Value
The return code for the thread function is placed in the area pointed to bystatus , if status is
not NULL.

See Also
SDL_CreateThread

244

SDL_KillThread

Name
SDL_KillThread — Gracelessly terminates the thread.

Synopsis

#include "SDL.h"
#include "SDL_thread.h"
void SDL_KillThread (SDL_Thread *thread);

Description
SDL_KillThread gracelessly terminates the thread associated withthread . If possible, you
should use some other form of IPC to signal the thread to quit.

See Also
SDL_CreateThread , SDL_WaitThread

245

SDL_CreateMutex

Name
SDL_CreateMutex — Create a mutex

Synopsis

#include "SDL.h"
#include "SDL_thread.h"
SDL_mutex * SDL_CreateMutex (void);

Description
Create a new, unlocked mutex.

Examples

SDL_mutex *mut;

mut=SDL_CreateMutex();
.
.
if(SDL_mutexP(mut)==-1){

fprintf(stderr, "Couldn’t lock mutex\n");
exit(-1);

}
.
/* Do stuff while mutex is locked */
.
.
if(SDL_mutexV(mut)==-1){

fprintf(stderr, "Couldn’t unlock mutex\n");
exit(-1);

}

SDL_DestroyMutex(mut);

246

SDL_CreateMutex

See Also
SDL_mutexP , SDL_mutexV , SDL_DestroyMutex

247

SDL_DestroyMutex

Name
SDL_DestroyMutex — Destroy a mutex

Synopsis

#include "SDL.h"
#include "SDL_thread.h"
void SDL_DestroyMutex (SDL_mutex *mutex);

Description
Destroy a previouslycreatedmutex.

See Also
SDL_CreateMutex

248

SDL_mutexP

Name
SDL_mutexP — Lock a mutex

Synopsis

#include "SDL.h"
#include "SDL_thread.h"
int SDL_mutexP (SDL_mutex *mutex);

Description
Locks themutex , which was previously created withSDL_CreateMutex . If the mutex is already
locked thenSDL_mutexP will not return until it isunlocked. Returns 0 on success, or -1 on an error.

SDL also defines a macro#define SDL_LockMutex(m) SDL_mutexP(m) .

See Also
SDL_CreateMutex , SDL_mutexV

249

SDL_mutexV

Name
SDL_mutexV — Unlock a mutex

Synopsis

#include "SDL.h"
#include "SDL_thread.h"
int SDL_mutexV (SDL_mutex *mutex);

Description
Unlocks themutex , which was previously created withSDL_CreateMutex . Returns 0 on success,
or -1 on an error.

SDL also defines a macro#define SDL_UnlockMutex(m) SDL_mutexV(m) .

See Also
SDL_CreateMutex , SDL_mutexP

250

SDL_CreateSemaphore

Name
SDL_CreateSemaphore — Creates a new semaphore and assigns an initial value to it.

Synopsis

#include "SDL.h"
#include "SDL_thread.h"
SDL_sem *SDL_CreateSemaphore (Uint32 initial_value);

Description
SDL_CreateSemaphore() creates a new semaphore and initializes it with the value
initial_value . Each locking operation on the semaphore bySDL_SemWait, SDL_SemTryWait
or SDL_SemWaitTimeoutwill atomically decrement the semaphore value. The locking operation
will be blocked if the semaphore value is not positive (greater than zero). Each unlock operation by
SDL_SemPostwill atomically increment the semaphore value.

Return Value
Returns a pointer to an initialized semaphore or NULL if there was an error.

Examples

SDL_sem *my_sem;

my_sem = SDL_CreateSemaphore(INITIAL_SEM_VALUE);

if (my_sem == NULL) {
return CREATE_SEM_FAILED;

}

251

SDL_CreateSemaphore

See Also
SDL_DestroySemaphore , SDL_SemWait, SDL_SemTryWait , SDL_SemWaitTimeout ,
SDL_SemPost, SDL_SemValue

252

SDL_DestroySemaphore

Name
SDL_DestroySemaphore — Destroys a semaphore that was created bySDL_CreateSemaphore.

Synopsis

#include "SDL.h"
#include "SDL_thread.h"
void SDL_DestroySemaphore (SDL_sem *sem);

Description
SDL_DestroySemaphore destroys the semaphore pointed to bysem that was created by
SDL_CreateSemaphore . It is not safe to destroy a semaphore if there are threads currently blocked
waiting on it.

Examples

if (my_sem != NULL) {
SDL_DestroySemaphore(my_sem);
my_sem = NULL;

}

See Also
SDL_CreateSemaphore , SDL_SemWait, SDL_SemTryWait , SDL_SemWaitTimeout ,
SDL_SemPost, SDL_SemValue

253

SDL_SemWait

Name
SDL_SemWait — Lock a semaphore and suspend the thread if the semaphore value is zero.

Synopsis

#include "SDL.h"
#include "SDL_thread.h"
int SDL_SemWait(SDL_sem *sem);

Description
SDL_SemWait() suspends the calling thread until either the semaphore pointed to bysem has a
positive value, the call is interrupted by a signal or error. If the call is successful it will atomically
decrement the semaphore value.

After SDL_SemWait() is successful, the semaphore can be released and its count atomically
incremented by a successful call toSDL_SemPost.

Return Value
Returns 0 if successful or -1 if there was an error (leaving the semaphore unchanged).

Examples

if (SDL_SemWait(my_sem) == -1) {
return WAIT_FAILED;

}

...

SDL_SemPost(my_sem);

254

SDL_SemWait

See Also
SDL_CreateSemaphore , SDL_DestroySemaphore , SDL_SemTryWait , SDL_SemWaitTimeout ,
SDL_SemPost, SDL_SemValue

255

SDL_SemTryWait

Name
SDL_SemTryWait — Attempt to lock a semaphore but don’t suspend the thread.

Synopsis

#include "SDL.h"
#include "SDL_thread.h"
int SDL_SemTryWait (SDL_sem *sem);

Description
SDL_SemTryWait is a non-blocking varient ofSDL_SemWait. If the value of the semaphore pointed
to bysem is positive it will atomically decrement the semaphore value and return 0, otherwise it will
return SDL_MUTEX_TIMEOUT instead of suspending the thread.

After SDL_SemTryWait is successful, the semaphore can be released and its count atomically
incremented by a successful call toSDL_SemPost.

Return Value
Returns 0 if the semaphore was successfully locked or either SDL_MUTEX_TIMEOUT or -1 if the
thread would have suspended or there was an error, respectivly.

If the semaphore was not successfully locked, the semaphore will be unchanged.

Examples

res = SDL_SemTryWait(my_sem);

if (res == SDL_MUTEX_TIMEOUT) {
return TRY_AGAIN;

}
if (res == -1) {

return WAIT_ERROR;
}

256

SDL_SemTryWait

...

SDL_SemPost(my_sem);

See Also
SDL_CreateSemaphore , SDL_DestroySemaphore , SDL_SemWait, SDL_SemWaitTimeout ,
SDL_SemPost, SDL_SemValue

257

SDL_SemWaitTimeout

Name
SDL_SemWaitTimeout — Lock a semaphore, but only wait up to a specified maximum time.

Synopsis

#include "SDL.h"
#include "SDL_thread.h"
int SDL_SemWaitTimeout (SDL_sem *sem, Uint32 timeout);

Description
SDL_SemWaitTimeout() is a varient ofSDL_SemWaitwith a maximum timeout value. If the
value of the semaphore pointed to bysem is positive (greater than zero) it will atomically decrement
the semaphore value and return 0, otherwise it will wait up totimeout milliseconds trying to lock
the semaphore. This function is to be avoided if possible since on some platforms it is implemented
by polling the semaphore every millisecond in a busy loop.

After SDL_SemWaitTimeout() is successful, the semaphore can be released and its count
atomically incremented by a successful call toSDL_SemPost.

Return Value
Returns 0 if the semaphore was successfully locked or either SDL_MUTEX_TIMEOUT or -1 if the
timeout period was exceeded or there was an error, respectivly.

If the semaphore was not successfully locked, the semaphore will be unchanged.

Examples

res = SDL_SemWaitTimeout(my_sem, WAIT_TIMEOUT_MILLISEC);

if (res == SDL_MUTEX_TIMEOUT) {
return TRY_AGAIN;

}
if (res == -1) {

return WAIT_ERROR;

258

SDL_SemWaitTimeout

}

...

SDL_SemPost(my_sem);

See Also
SDL_CreateSemaphore , SDL_DestroySemaphore , SDL_SemWait, SDL_SemTryWait ,
SDL_SemPost, SDL_SemValue

259

SDL_SemPost

Name
SDL_SemPost — Unlock a semaphore.

Synopsis

#include "SDL.h"
#include "SDL_thread.h"
int SDL_SemPost(SDL_sem *sem);

Description
SDL_SemPost unlocks the semaphore pointed to bysem and atomically increments the semaphores
value. Threads that were blocking on the semaphore may be scheduled after this call succeeds.

SDL_SemPost should be called after a semaphore is locked by a successful call toSDL_SemWait,
SDL_SemTryWaitor SDL_SemWaitTimeout.

Return Value
Returns 0 if successful or -1 if there was an error (leaving the semaphore unchanged).

Examples

SDL_SemPost(my_sem);

See Also
SDL_CreateSemaphore , SDL_DestroySemaphore , SDL_SemWait, SDL_SemTryWait ,
SDL_SemWaitTimeout , SDL_SemValue

260

SDL_SemValue

Name
SDL_SemValue — Return the current value of a semaphore.

Synopsis

#include "SDL.h"
#include "SDL/SDL_thread.h"
Uint32 SDL_SemValue(SDL_sem *sem);

Description
SDL_SemValue() returns the current semaphore value from the semaphore pointed to bysem.

Return Value
Returns current value of the semaphore.

Examples

sem_value = SDL_SemValue(my_sem);

See Also
SDL_CreateSemaphore , SDL_DestroySemaphore , SDL_SemWait, SDL_SemTryWait ,
SDL_SemWaitTimeout , SDL_SemPost

261

SDL_CreateCond

Name
SDL_CreateCond — Create a condition variable

Synopsis

#include "SDL.h"
#include "SDL_thread.h"
SDL_cond * SDL_CreateCond (void);

Description
Creates a condition variable.

Examples

SDL_cond *cond;

cond=SDL_CreateCond();
.
.
/* Do stuff */

.

.
SDL_DestroyCond(cond);

See Also
SDL_DestroyCond , SDL_CondWait , SDL_CondSignal

262

SDL_DestroyCond

Name
SDL_DestroyCond — Destroy a condition variable

Synopsis

#include "SDL.h"
#include "SDL_thread.h"
void SDL_DestroyCond (SDL_cond *cond);

Description
Destroys a condition variable.

See Also
SDL_CreateCond

263

SDL_CondSignal

Name
SDL_CondSignal — Restart a thread wait on a condition variable

Synopsis

#include "SDL.h"
#include "SDL_thread.h"
int SDL_CondSignal (SDL_cond *cond);

Description
Restart one of the threads that are waiting on the condition variable,cond . Returns 0 on success of
-1 on an error.

See Also
SDL_CondWait , SDL_CondBroadcast

264

SDL_CondBroadcast

Name
SDL_CondBroadcast — Restart all threads waiting on a condition variable

Synopsis

#include "SDL.h"
#include "SDL_thread.h"
int SDL_CondBroadcast (SDL_cond *cond);

Description
Restarts all threads that are waiting on the condition variable,cond . Returns 0 on success, or -1 on
an error.

See Also
SDL_CondSignal , SDL_CondWait

265

SDL_CondWait

Name
SDL_CondWait — Wait on a condition variable

Synopsis

#include "SDL.h"
#include "SDL_thread.h"
int SDL_CondWait (SDL_cond *cond, SDL_mutex *mut);

Description
Wait on the condition variablecond and unlock the provided mutex. The mutex must the locked
before entering this function. Returns 0 when it is signalled, or -1 on an error.

See Also
SDL_CondWaitTimeout , SDL_CondSignal , SDL_mutexP

266

SDL_CondWaitTimeout

Name
SDL_CondWaitTimeout — Wait on a condition variable, with timeout

Synopsis

#include "SDL.h"
#include "SDL_thread.h"
int SDL_CondWaitTimeout (SDL_cond *cond, SDL_mutex *mutex, Uint32 ms);

Description
Wait on the condition variablecond for, at most,msmilliseconds.mut is unlocked so it must be
locked when the function is called. ReturnsSDL_MUTEX_TIMEDOUTif the condition is not signalled
in the allotted time, 0 if it was signalled or -1 on an error.

See Also
SDL_CondWait

267

Chapter 13. Time
SDL provides several cross-platform functions for dealing with time. It provides a way to get the
current time, a way to wait a little while, and a simple timer mechanism. These functions give you
two ways of moving an object every x milliseconds:

• Use a timer callback function. This may have the bad effect that it runs in a seperate thread or uses
alarm signals, but it’s easier to implement.

• Or you can get the number of milliseconds passed, and move the object if, for example, 30 ms
passed.

SDL_GetTicks

Name
SDL_GetTicks — Get the number of milliseconds since the SDL library initialization.

Synopsis

#include "SDL.h"
Uint32 SDL_GetTicks (void);

Description
Get the number of milliseconds since the SDL library initialization. Note that this value wraps if the
program runs for more than ~49 days.

See Also
SDL_Delay

268

SDL_Delay

Name
SDL_Delay — Wait a specified number of milliseconds before returning.

Synopsis

#include "SDL.h"
void SDL_Delay (Uint32 ms);

Description
Wait a specified number of milliseconds before returning.SDL_Delay will wait at leastthe specified
time, but possible longer due to OS scheduling.

Note: Count on a delay granularity of at least 10 ms. Some platforms have shorter clock ticks
but this is the most common.

See Also
SDL_AddTimer

269

SDL_AddTimer

Name
SDL_AddTimer — Add a timer which will call a callback after the specified number of
milliseconds has elapsed.

Synopsis

#include "SDL.h"
SDL_TimerID SDL_AddTimer (Uint32 interval, SDL_NewTimerCallback callback,
void *param);

Callback

/* type definition for the "new" timer callback function */
typedef Uint32 (*SDL_NewTimerCallback)(Uint32 interval, void *param);

Description
Adds a callback function to be run after the specified number of milliseconds has elapsed. The
callback function is passed the current timer interval and the user supplied parameter from the
SDL_AddTimer call and returns the next timer interval. If the returned value from the callback is the
same as the one passed in, the periodic alarm continues, otherwise a new alarm is scheduled.

To cancel a currently running timer callSDL_RemoveTimerwith the timer ID returned from
SDL_AddTimer .

The timer callback function may run in a different thread than your main program, and so shouldn’t
call any functions from within itself. You may always callSDL_PushEvent, however.

The granularity of the timer is platform-dependent, but you should count on it being at least 10 ms as
this is the most common number. This means that if you request a 16 ms timer, your callback will
run approximately 20 ms later on an unloaded system. If you wanted to set a flag signaling a frame
update at 30 frames per second (every 33 ms), you might set a timer for 30 ms (see example below).
If you use this function, you need to passSDL_INIT_TIMER to SDL_Init.

270

SDL_AddTimer

Return Value
Returns an ID value for the added timer or NULL if there was an error.

Examples

my_timer_id = SDL_AddTimer((33/10)*10, my_callbackfunc, my_callback_param);

See Also
SDL_RemoveTimer , SDL_PushEvent

271

SDL_RemoveTimer

Name
SDL_RemoveTimer — Remove a timer which was added withSDL_AddTimer.

Synopsis

#include "SDL.h"
SDL_bool SDL_RemoveTimer (SDL_TimerID id);

Description
Removes a timer callback previously added withSDL_AddTimer.

Return Value
Returns a boolean value indicating success.

Examples

SDL_RemoveTimer(my_timer_id);

See Also
SDL_AddTimer

272

SDL_SetTimer

Name
SDL_SetTimer — Set a callback to run after the specified number of milliseconds has elapsed.

Synopsis

#include "SDL.h"
int SDL_SetTimer (Uint32 interval, SDL_TimerCallback callback);

Callback
/* Function prototype for the timer callback function */ typedef Uint32
(*SDL_TimerCallback)(Uint32 interval);

Description
Set a callback to run after the specified number of milliseconds has elapsed. The callback function is
passed the current timer interval and returns the next timer interval. If the returned value is the same
as the one passed in, the periodic alarm continues, otherwise a new alarm is scheduled.

To cancel a currently running timer, callSDL_SetTimer(0, NULL);

The timer callback function may run in a different thread than your main constant, and so shouldn’t
call any functions from within itself.

The maximum resolution of this timer is 10 ms, which means that if you request a 16 ms timer, your
callback will run approximately 20 ms later on an unloaded system. If you wanted to set a flag
signaling a frame update at 30 frames per second (every 33 ms), you might set a timer for 30 ms (see
example below).

If you use this function, you need to passSDL_INIT_TIMER to SDL_Init() .

Note: This function is kept for compatibility but has been superseded by the new timer functions
SDL_AddTimer and SDL_RemoveTimer which support multiple timers.

273

SDL_SetTimer

Examples

SDL_SetTimer((33/10)*10, my_callback);

See Also
SDL_AddTimer

274

